- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试创建自己的损失函数:
def custom_mse(y_true, y_pred):
tmp = 10000000000
a = list(itertools.permutations(y_pred))
for i in range(0, len(a)):
t = K.mean(K.square(a[i] - y_true), axis=-1)
if t < tmp :
tmp = t
return tmp
它应该创建预测向量的排列,并返回最小的损失。
"Tensor objects are not iterable when eager execution is not "
TypeError: Tensor objects are not iterable when eager execution is not enabled. To iterate over this tensor use tf.map_fn.
错误。我找不到此错误的任何来源。为什么会这样?
最佳答案
发生错误是因为 y_pred
是一个张量(不可迭代,无需急切执行),并且 itertools.permutations期望一个迭代来创建排列。此外,计算最小损失的部分也不起作用,因为张量 t
的值在图创建时是未知的。
我不会对张量进行排列,而是创建索引的排列(这是您可以在创建图形时执行的操作),然后从张量中收集排列后的索引。假设您的 Keras 后端是 TensorFlow 并且 y_true
/y_pred
是二维的,您的损失函数可以按如下方式实现:
def custom_mse(y_true, y_pred):
batch_size, n_elems = y_pred.get_shape()
idxs = list(itertools.permutations(range(n_elems)))
permutations = tf.gather(y_pred, idxs, axis=-1) # Shape=(batch_size, n_permutations, n_elems)
mse = K.square(permutations - y_true[:, None, :]) # Shape=(batch_size, n_permutations, n_elems)
mean_mse = K.mean(mse, axis=-1) # Shape=(batch_size, n_permutations)
min_mse = K.min(mean_mse, axis=-1) # Shape=(batch_size,)
return min_mse
关于python - 当未启用急切执行时,张量对象不可迭代。要迭代此张量,请使用 tf.map_fn,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/49592980/
在 Tensorflow(从 v1.2.1 开始)中,似乎有(至少)两个并行 API 来构建计算图。 tf.nn 中有函数,如 conv2d、avg_pool、relu、dropout,tf.laye
我正在处理眼睛轨迹数据和卷积神经网络。我被要求使用 tf.reduce_max(lastconv, axis=2)代替 MaxPooling 层和 tf.reduce_sum(lastconv,axi
TensorFlow 提供了 3 种不同的数据存储格式 tf.train.Feature .它们是: tf.train.BytesList tf.train.FloatList tf.train.In
我正在尝试为上下文强盗问题 (https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part
我在使用 Tensorflow 时遇到问题: 以下代码为卷积 block 生成正确的图: def conv_layer(self, inputs, filter_size = 3, num_filte
我正在将我的训练循环迁移到 Tensorflow 2.0 API .在急切执行模式下,tf.GradientTape替换 tf.gradients .问题是,它们是否具有相同的功能?具体来说: 在函数
tensorflow 中 tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)) 的目的是什么? 更多上下文:
我一直在努力学习 TensorFlow,我注意到不同的函数用于相同的目标。例如,为了平方变量,我看到了 tf.square()、tf.math.square() 和 tf.keras.backend.
我正在尝试使用自动编码器开发图像着色器。有 13000 张训练图像。如果我使用 tf.data,每个 epoch 大约需要 45 分钟,如果我使用 tf.utils.keras.Sequence 大约
我尝试按照 tensorflow 教程实现 MNIST CNN 神经网络,并找到这些实现 softmax 交叉熵的方法给出了不同的结果: (1) 不好的结果 softmax = tf.nn.softm
其实,我正在coursera上做deeplearning.ai的作业“Art Generation with Neural Style Transfer”。在函数 compute_layer_styl
训练神经网络学习“异或” 我正在尝试使用“批量归一化”,我创建了一个批量归一化层函数“batch_norm1”。 import tensorflow as tf import nump
我正在尝试协调来自 TF“图形和 session ”指南以及 TF“Keras”指南和 TF Estimators 指南的信息。现在在前者中它说 tf.Session 使计算图能够访问物理硬件以执行图
我正在关注此处的多层感知器示例:https://github.com/aymericdamien/TensorFlow-Examples我对函数 tf.nn.softmax_cross_entropy
回到 TensorFlow = 2.0 中消失了。因此,像这样的解决方案...... with tf.variable_scope("foo"): with tf.variable_scope
我按照官方网站中的步骤安装了tensorflow。但是,在该网站中,作为安装的最后一步,他们给出了一行代码来“验证安装”。但他们没有告诉这段代码会给出什么输出。 该行是: python -c "imp
代码: x = tf.constant([1.,2.,3.], shape = (3,2,4)) y = tf.constant([1.,2.,3.], shape = (3,21,4)) tf.ma
我正在尝试从 Github 训练一个 3D 分割网络.我的模型是用 Keras (Python) 实现的,这是一个典型的 U-Net 模型。模型,总结如下, Model: "functional_3"
我正在使用 TensorFlow 2。我正在尝试优化一个函数,该函数使用经过训练的 tensorflow 模型(毒药)的损失。 @tf.function def totalloss(x): x
试图了解 keras 优化器中的 SGD 优化代码 (source code)。在 get_updates 模块中,我们有: # momentum shapes = [K.int_shape(p) f
我是一名优秀的程序员,十分优秀!