gpt4 book ai didi

python - 高级方形检测(带连接区域)

转载 作者:太空狗 更新时间:2023-10-29 20:12:46 25 4
gpt4 key购买 nike

如果正方形在图像中有连接区域,我该如何检测它们。

我已经测试了提到的方法 OpenCV C++/Obj-C: Advanced square detection

效果不佳。

有什么好主意吗?

squares that has Connected region

import cv2
import numpy as np

def angle_cos(p0, p1, p2):
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )

def find_squares(img):
squares = []
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# cv2.imshow("gray", gray)

gaussian = cv2.GaussianBlur(gray, (5, 5), 0)

temp,bin = cv2.threshold(gaussian, 80, 255, cv2.THRESH_BINARY)
# cv2.imshow("bin", bin)

contours, hierarchy = cv2.findContours(bin, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)

cv2.drawContours( gray, contours, -1, (0, 255, 0), 3 )

#cv2.imshow('contours', gray)
for cnt in contours:
cnt_len = cv2.arcLength(cnt, True)
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
cnt = cnt.reshape(-1, 2)
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
if max_cos < 0.1:
squares.append(cnt)
return squares

if __name__ == '__main__':
img = cv2.imread('123.bmp')

#cv2.imshow("origin", img)

squares = find_squares(img)
print "Find %d squres" % len(squares)
cv2.drawContours( img, squares, -1, (0, 255, 0), 3 )
cv2.imshow('squares', img)

cv2.waitKey()

我在opencv的例子中使用了一些方法,但结果并不好。

最佳答案

应用基于距离变换的分水岭变换将分离对象:

enter image description here

处理边界处的对象总是有问题的,而且经常被丢弃,所以左上角未分离的粉红色矩形根本不是问题。

给定一张二值图像,我们可以应用距离变换 (DT) 并从中获取分水岭的标记。理想情况下,会有一个现成的函数来查找区域最小值/最大值,但由于它不存在,我们可以对如何设置 DT 阈值做出一个不错的猜测。基于标记,我们可以使用 Watershed 进行分割,问题就解决了。现在您可以担心区分矩形组件和非矩形组件了。

import sys
import cv2
import numpy
import random
from scipy.ndimage import label

def segment_on_dt(img):
dt = cv2.distanceTransform(img, 2, 3) # L2 norm, 3x3 mask
dt = ((dt - dt.min()) / (dt.max() - dt.min()) * 255).astype(numpy.uint8)
dt = cv2.threshold(dt, 100, 255, cv2.THRESH_BINARY)[1]
lbl, ncc = label(dt)

lbl[img == 0] = lbl.max() + 1
lbl = lbl.astype(numpy.int32)
cv2.watershed(cv2.cvtColor(img, cv2.COLOR_GRAY2BGR), lbl)
lbl[lbl == -1] = 0
return lbl


img = cv2.cvtColor(cv2.imread(sys.argv[1]), cv2.COLOR_BGR2GRAY)
img = cv2.threshold(img, 0, 255, cv2.THRESH_OTSU)[1]
img = 255 - img # White: objects; Black: background

ws_result = segment_on_dt(img)
# Colorize
height, width = ws_result.shape
ws_color = numpy.zeros((height, width, 3), dtype=numpy.uint8)
lbl, ncc = label(ws_result)
for l in xrange(1, ncc + 1):
a, b = numpy.nonzero(lbl == l)
if img[a[0], b[0]] == 0: # Do not color background.
continue
rgb = [random.randint(0, 255) for _ in xrange(3)]
ws_color[lbl == l] = tuple(rgb)

cv2.imwrite(sys.argv[2], ws_color)

从上图中,您可以考虑在每个组件中拟合椭圆以确定矩形。然后您可以使用一些度量来定义组件是否为矩形。这种方法更有可能适用于完全可见的矩形,但对于部分可见的矩形可能会产生不良结果。下图显示了这种方法的结果,如果拟合椭圆的矩形在组件面积的 10% 以内,则组件是矩形。

enter image description here

# Fit ellipse to determine the rectangles.
wsbin = numpy.zeros((height, width), dtype=numpy.uint8)
wsbin[cv2.cvtColor(ws_color, cv2.COLOR_BGR2GRAY) != 0] = 255

ws_bincolor = cv2.cvtColor(255 - wsbin, cv2.COLOR_GRAY2BGR)
lbl, ncc = label(wsbin)
for l in xrange(1, ncc + 1):
yx = numpy.dstack(numpy.nonzero(lbl == l)).astype(numpy.int64)
xy = numpy.roll(numpy.swapaxes(yx, 0, 1), 1, 2)
if len(xy) < 100: # Too small.
continue

ellipse = cv2.fitEllipse(xy)
center, axes, angle = ellipse
rect_area = axes[0] * axes[1]
if 0.9 < rect_area / float(len(xy)) < 1.1:
rect = numpy.round(numpy.float64(
cv2.cv.BoxPoints(ellipse))).astype(numpy.int64)
color = [random.randint(60, 255) for _ in xrange(3)]
cv2.drawContours(ws_bincolor, [rect], 0, color, 2)

cv2.imwrite(sys.argv[3], ws_bincolor)

关于python - 高级方形检测(带连接区域),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14997733/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com