- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我找不到任何关于在 Tegra 处理器上使用 CUDA 的信息,尽管它们提供了相当多的 SIMD 内核(~72)。NVIDIA 目前似乎将开发工作重点放在 Tegra 上通过 Tegra 开发套件(基于 Android)。
所以我的问题是:“是否可以在 Tegra 4 或更早的版本上使用 CUDA(或 OpenCL)?如果可以,支持什么版本?”
最佳答案
我们也对新闻文章感到困惑。从那以后,我们了解到以下内容:
根据 this tweet,Tegra 4 不支持 CUDA ( also here ) 由为 NVIDIA 工作的 SO 用户“harrism”编写。预计 future 的 Tegra 版本(与来源相同的推文)。
OpenCL 在 Tegra 上不受支持。
Tegra 一直支持 OpenGL ES 2 着色器,这里有一些 Tegra 2 和 Tegra 3 demos with these shaders来 self 们之前在 AccelerEyes 的工作。
不过,我们期待使用我们的 ES 2 着色器在 72 个 GPU 内核上运行我们的东西。很棒的芯片。
干杯!
关于c++ - CUDA 支持 NVIDIA Tegra 4 处理器吗?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/14292609/
我正在尝试在 Google Colab 上运行 stylegan2,但在我的 Drive 上运行所有文件,并避免使用 !git clone 从 github of stylegan2 。 这是我在特定
我需要升级我的 nvidia 驱动程序,以便尝试运行 NVIDIA-LInux-x86_64.run文件 但是,我看到以下消息 ERROR: An NVIDIA kernel module 'nvid
我经历过Cuda programming guide但仍然不清楚 cuda 内核在 GPU 上的什么位置?换句话说,它驻留在哪个内存段? 另外,我怎么知道我的设备支持的最大内核大小是多少?最大内核大小
我想在基于官方nvidia/cuda的容器中运行带有cuvid硬件加速解码的ffmpeg图片。 Ffmpeg 无法找到 libnvcuvid.so,尽管有所有必需的 cuda 库。ldconfig -
当我运行命令 nvidia-smi ,我得到以下两个按总线 ID 排序的 GPU: For GPU 0, 00000000:0A:00.0 For GPU 1, 00000000:41:00.0 但是
我正在使用 Ubuntu 14.04 LTS 运行 AWS EC2 g2.2xlarge 实例。我想在训练 TensorFlow 模型时观察 GPU 利用率。我在尝试运行“nvidia-smi”时遇到
我尝试在安装 docker-ce 后安装 nvidia-docker。我关注的是:https://github.com/NVIDIA/nvidia-docker安装 nvidia-docker。看来已
我一直认为 Hyper-Q 技术不过是 GPU 中的流。后来我发现我错了(是吗?)。所以我读了一些关于 Hyper-Q 的书,却更加困惑了。 我正在浏览一篇文章,它有以下两个陈述: A. Hyper-
我刚刚在安装了两个 K20m GPU 的服务器中运行了 simpleMultiGPU。然后运行 nvidia-smi 命令来显示 GPU 的状态。结果如下: 问题如下: GPU 内存使用情况似乎不
NVIDIA-SMI 抛出此错误: NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make
如何使用 Vulkan 来利用 Nvidia 的张量核心(在计算着色器中?!)? Nvidia 有这篇文章 Programming Tensor Cores in CUDA 9 ,但这显然是针对 CU
我在类的一个项目中使用 Chapel,我正在尝试使用我的两个 Nvidia Jetson nano 板进行多语言环境执行。按照本教程 https://chapel-lang.org/docs/usin
我得到nvidia-smi得到Memory-Usage是这样的 $nvidia-smi -i 0,1 Wed Mar 4 16:20:07 2020 +-----------------
我得到nvidia-smi得到Memory-Usage是这样的 $nvidia-smi -i 0,1 Wed Mar 4 16:20:07 2020 +-----------------
有没有区别: nvidia-docker 运行 和 docker run --runtime=nvidia ? 在 official docs他们使用后者,但我在其他在线教程中看到过前者。 最佳答案
我有一个用 C 编写的代码(使用 opencl 规范)来列出所有可用的设备。我的 PC 安装了 AMD FirePro 和 Nvidia 的 Tesla 显卡。我先安装了AMD-APP-SDK-v3.
我读到可以使用内核启动来同步不同的 block ,即,如果我希望所有 block 在进行操作 2 之前完成操作 1,我应该将操作 1 放在一个内核中,将操作 2 放在另一个内核中。这样,我可以实现 b
我目前正在尝试使用函数 NvAPI_Stereo_SetDriverMode 将 nvapi 设置为在直接模式下工作。 根据 Nvidia nvapi site (在手册中),如果你想做一个 dire
我对nvidia GPU的任务调度有些疑惑。 (1)如果一个 block (CTA)中的线程束已经完成,但仍有其他线程在运行,这个线程会等待其他线程完成吗?换句话说,当所有线程都完成时, block
有人在Nvidia Tegra X1上使用了tensorflow吗? 我发现一些资料表明TK1上可能存在这种情况,或者TX1上存在严重的黑客入侵/错误,但尚无确定的配方。 http://cudamus
我是一名优秀的程序员,十分优秀!