- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我目前有一台配备 Opteron 275 (2.2Ghz)(双核 CPU)和 4GB RAM 以及速度非常快的硬盘的机器。我发现即使是使用 C++ 模板(想想 boost 等)编译一些简单的项目时,我的编译时间也可能会花费很长时间(小项目需要几分钟,大项目需要更长的时间)。不幸的是,只有一个核心被固定在 100%,所以我知道这不是 I/O,而且似乎没有办法利用另一个核心进行 C++ 编译?
最佳答案
您使用的是预编译的 header 吗?它们通常提供我在 C++ 项目中获得的最大编译速度 boost 。
此外,根据您的编译器,您可以启用多线程编译。例如,对于 Visual C++,它是/MP 开关 ( see here for details ),尽管启用/MP 并不总是可行的,具体取决于您使用的其他命令行选项。
关于c++ - 什么是 boost 密集 C++/模板编译的良好 CPU/PC 设置?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2467336/
关闭。这个问题是not reproducible or was caused by typos .它目前不接受答案。 想改善这个问题吗?更新问题,使其成为 on-topic对于堆栈溢出。 5 个月前关
我正在尝试使用摄像机跟踪多个人。我不想使用 blob 分割技术。我想做什么: 执行背景减法以获得隔离人们运动的掩码。 在这些区域执行基于网格的光流 -我最好的选择是什么? 我正在努力实现。我已经尝试过
OpenCV 有 very good documentation on generating SIFT descriptors ,但这是“弱 SIFT”的一个版本,其中关键点由原始 Lowe algo
我有一个 cholmod_dense 数据结构: cholmod_dense* ex = cholmod_l_solve(CHOLMOD_A, L, B, &com); 我想提取这些值并将它们复制到另
这是先前发布的关于在 python 中使用 OpenCVs 密集筛选实现的问题的后续问题 (OpenCV-Python dense SIFT)。 使用建议的代码进行密集筛选 dense=cv2
我是计算机视觉的新手。我正在学习 Dense SIFT 和 HOG。对于密集 SIFT,算法只是将每个点视为一个有趣的点并计算其梯度向量。 HOG 是另一种用梯度向量描述图像的方法。 我认为 Dens
我正在尝试使用 openCV-python 2.4 计算密集 SIFT import cv2 def gen_sift_features(gray, step_size, gamma): de
我正在使用 OpenCV 实现词袋图像分类器。最初我测试了在 SURF 关键点中提取的 SURF 描述符。我听说 Dense SIFT(或 PHOW)描述符更适合我的目的,所以我也尝试了它们。 令我惊
我有一个密集的 Ax=b 类型的方程组要在我的 C++ 程序中求解,我希望在 boost 中使用 UBLAS 来实现该解决方案。在其他一些问题中,我发现人们正在使用扩展 LAPACK,但不幸的是,它似
我目前有一台配备 Opteron 275 (2.2Ghz)(双核 CPU)和 4GB RAM 以及速度非常快的硬盘的机器。我发现即使是使用 C++ 模板(想想 boost 等)编译一些简单的项目时,我
我是一名优秀的程序员,十分优秀!