- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我在 MacOS 10.8.2 上运行 python 2.6,并尝试安装 Numpy 以使用 NLTK。我已经查看了下面突出显示的几种方法,但我还没有成功安装该软件包。
我已经按照 this 安装了 xcode建议,但这并没有解决任何问题。
我试过了 building directly , 使用
python setup.py build --fcompiler=gnu95
返回以下消息
RuntimeError: Broken toolchain: cannot link a simple C program
直接安装,我从here下载了dmg文件.直接解压文件时,numpy
提示需要安装 Python 2.6 或更高版本,因此也失败了。
我在某处读到 MacOS 附带 Apple 版本的 Python,我想避免使用它;我已经安装了 Eclipse 和 PyDev,并且相信我没有使用 Apple 版本,但是有没有办法确认这是真的,并且 numpy
正在安装在“正确”版本的 Python 上?
当我尝试运行时
sudo easy_install numpy
我得到以下输出。最初我认为它与未找到 C/Fortran 编译器有关,但我在直接构建它时安装了 gfortran
,所以也许问题出在其他方面......我无法不过,请查看消息的其余部分来诊断问题。
在这一切之后,有没有人能给我指出一些可以帮助我安装 numpy
的确定性信息?到目前为止,我所尝试的方法有什么问题(如果有的话)?
在此先谦虚地感谢您!
Searching for numpy
Reading http://pypi.python.org/simple/numpy/
Reading http://numpy.scipy.org
Reading http://sourceforge.net/project/showfiles.php?group_id=1369&package_id=175103
Reading http://numeric.scipy.org
Best match: numpy 1.6.2
Downloading http://pypi.python.org/packages/source/n/numpy/numpy-1.6.2.zip#md5=7e13c931985f90efcfa0408f845d6fee
Processing numpy-1.6.2.zip
Running numpy-1.6.2/setup.py -q bdist_egg --dist-dir /tmp/easy_install-6DObmd/numpy-1.6.2/egg-dist-tmp-KMbGBl
Running from numpy source directory.non-existing path in '/private/tmp/easy_install-6DObmd/numpy-1.6.2/numpy/distutils': 'site.cfg'
/bin/sh: svnversion: command not found
/bin/sh: svnversion: command not found
Could not locate executable f95
Could not locate executable f90
Could not locate executable f77
Could not locate executable xlf90
Could not locate executable xlf
Could not locate executable ifort
Could not locate executable ifc
Could not locate executable g77
Found executable /usr/local/bin/gfortran
sh: /usr/bin/gcc-4.2: No such file or directory
sh: /usr/bin/gcc-4.2: No such file or directory
Traceback (most recent call last):
File "/opt/local/bin/easy_install", line 8, in <module>
load_entry_point('setuptools==0.6c11', 'console_scripts', 'easy_install')()
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 1712, in main
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 1700, in with_ei_usage
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 1716, in <lambda>
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/core.py", line 152, in setup
dist.run_commands()
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 987, in run_commands
self.run_command(cmd)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 1007, in run_command
cmd_obj.run()
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 211, in run
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 446, in easy_install
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 476, in install_item
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 655, in install_eggs
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 930, in build_and_install
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/easy_install.py", line 919, in run_setup
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/sandbox.py", line 62, in run_setup
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/sandbox.py", line 105, in run
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/sandbox.py", line 64, in <lambda>
File "setup.py", line 214, in <module>
File "setup.py", line 207, in setup_package
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/core.py", line 186, in setup
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/core.py", line 152, in setup
dist.run_commands()
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 987, in run_commands
self.run_command(cmd)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 1007, in run_command
cmd_obj.run()
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/site-packages/setuptools-0.6c11-py2.6.egg/setuptools/command/bdist_egg.py", line 167, in run
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/cmd.py", line 333, in run_command
self.distribution.run_command(command)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 1007, in run_command
cmd_obj.run()
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/command/egg_info.py", line 8, in run
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/cmd.py", line 333, in run_command
self.distribution.run_command(command)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/distutils/dist.py", line 1007, in run_command
cmd_obj.run()
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/command/build_src.py", line 152, in run
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/command/build_src.py", line 163, in build_sources
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/command/build_src.py", line 298, in build_library_sources
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/command/build_src.py", line 385, in generate_sources
File "/private/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/core/setup.py", line 696, in get_mathlib_info
RuntimeError: Broken toolchain: cannot link a simple C program
/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/misc_util.py:252: RuntimeWarning: Parent module 'numpy.distutils' not found while handling absolute import
Error in atexit._run_exitfuncs:
Traceback (most recent call last):
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/atexit.py", line 24, in _run_exitfuncs
func(*targs, **kargs)
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/misc_util.py", line 252, in clean_up_temporary_directory
ImportError: No module named numpy.distutils
Error in sys.exitfunc:
Traceback (most recent call last):
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.6/lib/python2.6/atexit.py", line 24, in _run_exitfuncs
func(*targs, **kargs)
File "/tmp/easy_install-GH52RV/numpy-1.6.2/numpy/distutils/misc_util.py", line 252, in clean_up_temporary_directory
ImportError: No module named numpy.distutils
最佳答案
我是这样解决这个问题的:
export CC=gcc
export CXX=g++
export FFLAGS=ff2c
根据我在此处的 10.7 安装说明下找到的信息:http://www.scipy.org/Installing_SciPy/Mac_OS_X
关于python - Mac 10.8.2 上的 Numpy 安装,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13106919/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!