gpt4 book ai didi

python - TensorFlow:Blas GEMM 启动失败

转载 作者:太空狗 更新时间:2023-10-29 19:35:05 27 4
gpt4 key购买 nike

当我尝试通过 gpu 将 TensorFlow 与 Keras 结合使用时,我收到此错误消息:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\__main__.py:2: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<keras.pre..., 37800, epochs=2, validation_data=<keras.pre..., validation_steps=4200)`
from ipykernel import kernelapp as app

Epoch 1/2

InternalError Traceback (most recent call last)
C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1038 try:
-> 1039 return fn(*args)
1040 except errors.OpError as e:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1020 feed_dict, fetch_list, target_list,
-> 1021 status, run_metadata)
1022

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\contextlib.py in __exit__(self, type, value, traceback)
65 try:
---> 66 next(self.gen)
67 except StopIteration:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:

InternalError: Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]

During handling of the above exception, another exception occurred:

InternalError Traceback (most recent call last)
<ipython-input-13-2a52d1079a66> in <module>()
1 history=model.fit_generator(batches, batches.n, nb_epoch=2,
----> 2 validation_data=val_batches, nb_val_samples=val_batches.n)

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
86 warnings.warn('Update your `' + object_name +
87 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 88 return func(*args, **kwargs)
89 wrapper._legacy_support_signature = inspect.getargspec(func)
90 return wrapper

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_q_size, workers, pickle_safe, initial_epoch)
1108 workers=workers,
1109 pickle_safe=pickle_safe,
-> 1110 initial_epoch=initial_epoch)
1111
1112 @interfaces.legacy_generator_methods_support

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
86 warnings.warn('Update your `' + object_name +
87 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 88 return func(*args, **kwargs)
89 wrapper._legacy_support_signature = inspect.getargspec(func)
90 return wrapper

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_q_size, workers, pickle_safe, initial_epoch)
1888 outs = self.train_on_batch(x, y,
1889 sample_weight=sample_weight,
-> 1890 class_weight=class_weight)
1891
1892 if not isinstance(outs, list):

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\training.py in train_on_batch(self, x, y, sample_weight, class_weight)
1631 ins = x + y + sample_weights
1632 self._make_train_function()
-> 1633 outputs = self.train_function(ins)
1634 if len(outputs) == 1:
1635 return outputs[0]

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py in __call__(self, inputs)
2227 session = get_session()
2228 updated = session.run(self.outputs + [self.updates_op],
-> 2229 feed_dict=feed_dict)
2230 return updated[:len(self.outputs)]
2231

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
776 try:
777 result = self._run(None, fetches, feed_dict, options_ptr,
--> 778 run_metadata_ptr)
779 if run_metadata:
780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
980 if final_fetches or final_targets:
981 results = self._do_run(handle, final_targets, final_fetches,
--> 982 feed_dict_string, options, run_metadata)
983 else:
984 results = []

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1030 if handle is None:
1031 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032 target_list, options, run_metadata)
1033 else:
1034 return self._do_call(_prun_fn, self._session, handle, feed_dict,

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1050 except KeyError:
1051 pass
-> 1052 raise type(e)(node_def, op, message)
1053
1054 def _extend_graph(self):

InternalError: Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]

Caused by op 'dense_1/MatMul', defined at:
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
app.launch_new_instance()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2683, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2787, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2847, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-10-1e7a3b259f23>", line 4, in <module>
model.add(Dense(10, activation='softmax'))
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py", line 466, in add
output_tensor = layer(self.outputs[0])
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\topology.py", line 585, in __call__
output = self.call(inputs, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\layers\core.py", line 840, in call
output = K.dot(inputs, self.kernel)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py", line 936, in dot
out = tf.matmul(x, y)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1801, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 1263, in _mat_mul
transpose_b=transpose_b, name=name)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()

InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]

当我尝试使用 CPU 将 TensorFlow 与 Keras 结合使用时,我收到此错误消息:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\__main__.py:5: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<keras.pre..., 37800, validation_steps=4200, validation_data=<keras.pre..., epochs=2)`
Epoch 1/2
---------------------------------------------------------------------------
InternalError Traceback (most recent call last)
C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1038 try:
-> 1039 return fn(*args)
1040 except errors.OpError as e:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
1020 feed_dict, fetch_list, target_list,
-> 1021 status, run_metadata)
1022

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\contextlib.py in __exit__(self, type, value, traceback)
65 try:
---> 66 next(self.gen)
67 except StopIteration:

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py in raise_exception_on_not_ok_status()
465 compat.as_text(pywrap_tensorflow.TF_Message(status)),
--> 466 pywrap_tensorflow.TF_GetCode(status))
467 finally:

InternalError: Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]
[[Node: Assign_3/_84 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_374_Assign_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

During handling of the above exception, another exception occurred:

InternalError Traceback (most recent call last)
<ipython-input-14-f66b4d3d5b88> in <module>()
3 with tf.device('/cpu:0'):
4 history=model.fit_generator(batches, batches.n, nb_epoch=2,
----> 5 validation_data=val_batches, nb_val_samples=val_batches.n)

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
86 warnings.warn('Update your `' + object_name +
87 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 88 return func(*args, **kwargs)
89 wrapper._legacy_support_signature = inspect.getargspec(func)
90 return wrapper

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_q_size, workers, pickle_safe, initial_epoch)
1108 workers=workers,
1109 pickle_safe=pickle_safe,
-> 1110 initial_epoch=initial_epoch)
1111
1112 @interfaces.legacy_generator_methods_support

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
86 warnings.warn('Update your `' + object_name +
87 '` call to the Keras 2 API: ' + signature, stacklevel=2)
---> 88 return func(*args, **kwargs)
89 wrapper._legacy_support_signature = inspect.getargspec(func)
90 return wrapper

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_q_size, workers, pickle_safe, initial_epoch)
1888 outs = self.train_on_batch(x, y,
1889 sample_weight=sample_weight,
-> 1890 class_weight=class_weight)
1891
1892 if not isinstance(outs, list):

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\training.py in train_on_batch(self, x, y, sample_weight, class_weight)
1631 ins = x + y + sample_weights
1632 self._make_train_function()
-> 1633 outputs = self.train_function(ins)
1634 if len(outputs) == 1:
1635 return outputs[0]

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py in __call__(self, inputs)
2227 session = get_session()
2228 updated = session.run(self.outputs + [self.updates_op],
-> 2229 feed_dict=feed_dict)
2230 return updated[:len(self.outputs)]
2231

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
776 try:
777 result = self._run(None, fetches, feed_dict, options_ptr,
--> 778 run_metadata_ptr)
779 if run_metadata:
780 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
980 if final_fetches or final_targets:
981 results = self._do_run(handle, final_targets, final_fetches,
--> 982 feed_dict_string, options, run_metadata)
983 else:
984 results = []

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1030 if handle is None:
1031 return self._do_call(_run_fn, self._session, feed_dict, fetch_list,
-> 1032 target_list, options, run_metadata)
1033 else:
1034 return self._do_call(_prun_fn, self._session, handle, feed_dict,

C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
1050 except KeyError:
1051 pass
-> 1052 raise type(e)(node_def, op, message)
1053
1054 def _extend_graph(self):

InternalError: Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]
[[Node: Assign_3/_84 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_374_Assign_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

Caused by op 'dense_1/MatMul', defined at:
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\runpy.py", line 85, in _run_code
exec(code, run_globals)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\__main__.py", line 3, in <module>
app.launch_new_instance()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\traitlets\config\application.py", line 658, in launch_instance
app.start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelapp.py", line 477, in start
ioloop.IOLoop.instance().start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\ioloop.py", line 177, in start
super(ZMQIOLoop, self).start()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\ioloop.py", line 888, in start
handler_func(fd_obj, events)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 440, in _handle_events
self._handle_recv()
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 472, in _handle_recv
self._run_callback(callback, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\zmq\eventloop\zmqstream.py", line 414, in _run_callback
callback(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tornado\stack_context.py", line 277, in null_wrapper
return fn(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 283, in dispatcher
return self.dispatch_shell(stream, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 235, in dispatch_shell
handler(stream, idents, msg)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\kernelbase.py", line 399, in execute_request
user_expressions, allow_stdin)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\ipkernel.py", line 196, in do_execute
res = shell.run_cell(code, store_history=store_history, silent=silent)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\ipykernel\zmqshell.py", line 533, in run_cell
return super(ZMQInteractiveShell, self).run_cell(*args, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2683, in run_cell
interactivity=interactivity, compiler=compiler, result=result)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2787, in run_ast_nodes
if self.run_code(code, result):
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\IPython\core\interactiveshell.py", line 2847, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-12-1e7a3b259f23>", line 4, in <module>
model.add(Dense(10, activation='softmax'))
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\models.py", line 466, in add
output_tensor = layer(self.outputs[0])
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\engine\topology.py", line 585, in __call__
output = self.call(inputs, **kwargs)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\layers\core.py", line 840, in call
output = K.dot(inputs, self.kernel)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\keras\backend\tensorflow_backend.py", line 936, in dot
out = tf.matmul(x, y)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\math_ops.py", line 1801, in matmul
a, b, transpose_a=transpose_a, transpose_b=transpose_b, name=name)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\ops\gen_math_ops.py", line 1263, in _mat_mul
transpose_b=transpose_b, name=name)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\op_def_library.py", line 768, in apply_op
op_def=op_def)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 2336, in create_op
original_op=self._default_original_op, op_def=op_def)
File "C:\Users\nicol\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py", line 1228, in __init__
self._traceback = _extract_stack()

InternalError (see above for traceback): Blas GEMM launch failed : a.shape=(64, 784), b.shape=(784, 10), m=64, n=10, k=784
[[Node: dense_1/MatMul = MatMul[T=DT_FLOAT, transpose_a=false, transpose_b=false, _device="/job:localhost/replica:0/task:0/gpu:0"](flatten_1/Reshape, dense_1/kernel/read)]]
[[Node: Assign_3/_84 = _Recv[client_terminated=false, recv_device="/job:localhost/replica:0/task:0/cpu:0", send_device="/job:localhost/replica:0/task:0/gpu:0", send_device_incarnation=1, tensor_name="edge_374_Assign_3", tensor_type=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"]()]]

在这两种情况下,错误都与 InternalError(回溯见上):Blas GEMM 启动失败你能告诉我如何启动 Blas GEMM 吗?我在 3.5 python anaconda 环境中安装了 tensorflow 和 keras,我还安装了所有需要的模块(numpy、pandas、scipy、scikit-learn)。我有一个带有可以使用 CUDA 的 NVIDIA gpu 的 Windows 10。我下载了 CUDA 和 cuDNN。我在 Chrome 上使用 Jupyter notebook。

有时,当我运行我的代码时,我发现它并没有出现这个错误,而是开始运行然后崩溃了。崩溃后,我无法在我的 jupyter notebook 上做任何事情,一段时间后弹出窗口询问我是否要终止该页面。这是我在坠机后得到的图像。!( http://www.hostingpics.net/viewer.php?id=647186tensorflowError.png )

附言我知道我的问题与这个问题类似: Tensorflow Basic Example Error: CUBLAS_STATUS_NOT_INITIALIZED但它还没有在那里得到解决,我不确定这个问题是否足够清楚,或者是否与我遇到的问题完全相同,所以我将其与我自己的错误消息一起发布。这个问题不同于: TensorFlow: InternalError: Blas SGEMM launch failed因为我遇到的是 GEMM 而不是 SGEMM 的问题,而且我的问题是关于 gpu 和 cpu 的,而且这个问题的答案没有解决。

最佳答案

这对我在 TensorFlow 2.1.0 上有效(根据:https://www.tensorflow.org/api_docs/python/tf/config/experimental/set_memory_growth)

import tensorflow as tf
physical_devices = tf.config.list_physical_devices('GPU')
for device in physical_devices:
tf.config.experimental.set_memory_growth(device, True)

关于python - TensorFlow:Blas GEMM 启动失败,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/43990046/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com