gpt4 book ai didi

python - 列/行切片 torch 稀疏张量

转载 作者:太空狗 更新时间:2023-10-29 19:28:23 40 4
gpt4 key购买 nike

我有一个 pytorch 稀疏张量,我需要使用此切片 [idx][:,idx] 对行/列进行切片,其中 idx 是索引列表,使用提到的切片在普通浮点张量上产生我想要的结果。是否可以在稀疏张量上应用相同的切片?这里的例子:

#constructing sparse matrix
i = np.array([[0,1,2,2],[0,1,2,1]])
v = np.ones(4)
i = torch.from_numpy(i.astype("int64"))
v = torch.from_numpy(v.astype("float32"))
test1 = torch.sparse.FloatTensor(i, v)

#constructing float tensor
test2 = np.array([[1,0,0],[0,1,0],[0,1,1]])
test2 = autograd.Variable(torch.cuda.FloatTensor(test2), requires_grad=False)

#slicing
idx = [1,2]
print(test2[idx][:,idx])

输出:

Variable containing:
1 0
1 1
[torch.cuda.FloatTensor of size 2x2 (GPU 0)]

我持有一个 250.000 x 250.000 的邻接矩阵,我需要在其中切片 n 行和 n 列,使用随机 idx,通过简单地采样 n 随机 idx。由于数据集太大,转换为更方便的数据类型是不现实的。

我能在test1上得到同样的切片结果吗?有可能吗?如果没有,是否有任何解决方法?

现在我正在使用以下解决方案的“hack”运行我的模型:

idx = sorted(random.sample(range(0, np.shape(test1)[0]), 9000))
test1 = test1AsCsr[idx][:,idx].todense().astype("int32")
test1 = autograd.Variable(torch.cuda.FloatTensor(test1), requires_grad=False)

其中 test1AsCsr 是我的 test1 转换为 numpy CSR 矩阵。该解决方案有效,但速度非常慢,并且使我的 GPU 利用率非常低,因为它需要不断地从 CPU 内存读取/写入。

编辑:结果是非稀疏张量没问题

最佳答案

二维稀疏索引的可能答案

在下面找到答案,玩几个pytorch方法(torch.eq(), torch.unique(), torch.sort() 等)以输出形状为 (len(idx), len(idx)) 的紧凑切片张量。

我测试了几个边缘情况(无序 idxv0i 和多个相同的索引对等),虽然我可能忘记了一些。还应检查性能。

import torch
import numpy as np

def in1D(x, labels):
"""
Sub-optimal equivalent to numpy.in1D().
Hopefully this feature will be properly covered soon
c.f. https://github.com/pytorch/pytorch/issues/3025
Snippet by Aron Barreira Bordin
Args:
x (Tensor): Tensor to search values in
labels (Tensor/list): 1D array of values to search for

Returns:
Tensor: Boolean tensor y of same shape as x, with y[ind] = True if x[ind] in labels

Example:
>>> in1D(torch.FloatTensor([1, 2, 0, 3]), [2, 3])
FloatTensor([False, True, False, True])
"""
mapping = torch.zeros(x.size()).byte()
for label in labels:
mapping = mapping | x.eq(label)
return mapping


def compact1D(x):
"""
"Compact" values 1D uint tensor, so that all values are in [0, max(unique(x))].
Args:
x (Tensor): uint Tensor

Returns:
Tensor: uint Tensor of same shape as x

Example:
>>> densify1D(torch.ByteTensor([5, 8, 7, 3, 8, 42]))
ByteTensor([1, 3, 2, 0, 3, 4])
"""
x_sorted, x_sorted_ind = torch.sort(x, descending=True)
x_sorted_unique, x_sorted_unique_ind = torch.unique(x_sorted, return_inverse=True)
x[x_sorted_ind] = x_sorted_unique_ind
return x

# Input sparse tensor:
i = torch.from_numpy(np.array([[0,1,4,3,2,1],[0,1,3,1,4,1]]).astype("int64"))
v = torch.from_numpy(np.arange(1, 7).astype("float32"))
test1 = torch.sparse.FloatTensor(i, v)
print(test1.to_dense())
# tensor([[ 1., 0., 0., 0., 0.],
# [ 0., 8., 0., 0., 0.],
# [ 0., 0., 0., 0., 5.],
# [ 0., 4., 0., 0., 0.],
# [ 0., 0., 0., 3., 0.]])

# note: test1[1, 1] = v[i[1,:]] + v[i[6,:]] = 2 + 6 = 8
# since both i[1,:] and i[6,:] are [1,1]

# Input slicing indices:
idx = [4,1,3]

# Getting the elements in `i` which correspond to `idx`:
v_idx = in1D(i, idx).byte()
v_idx = v_idx.sum(dim=0).squeeze() == i.size(0) # or `v_idx.all(dim=1)` for pytorch 0.5+
v_idx = v_idx.nonzero().squeeze()

# Slicing `v` and `i` accordingly:
v_sliced = v[v_idx]
i_sliced = i.index_select(dim=1, index=v_idx)

# Building sparse result tensor:
i_sliced[0] = compact1D(i_sliced[0])
i_sliced[1] = compact1D(i_sliced[1])

# To make sure to have a square dense representation:
size_sliced = torch.Size([len(idx), len(idx)])
res = torch.sparse.FloatTensor(i_sliced, v_sliced, size_sliced)

print(res)
# torch.sparse.FloatTensor of size (3,3) with indices:
# tensor([[ 0, 2, 1, 0],
# [ 0, 1, 0, 0]])
# and values:
# tensor([ 2., 3., 4., 6.])

print(res.to_dense())
# tensor([[ 8., 0., 0.],
# [ 4., 0., 0.],
# [ 0., 3., 0.]])

一维稀疏索引的上一个答案

根据相关 open issue 中分享的直觉,这是一个(可能不是最优的并且没有涵盖所有边缘情况)解决方案(希望这个功能很快就会被正确覆盖):

# Constructing a sparse tensor a bit more complicated for the sake of demo:
i = torch.LongTensor([[0, 1, 5, 2]])
v = torch.FloatTensor([[1, 3, 0], [5, 7, 0], [9, 9, 9], [1,2,3]])
test1 = torch.sparse.FloatTensor(i, v)

# note: if you directly have sparse `test1`, you can get `i` and `v`:
# i, v = test1._indices(), test1._values()

# Getting the slicing indices:
idx = [1,2]

# Preparing to slice `v` according to `idx`.
# For that, we gather the list of indices `v_idx` such that i[v_idx[k]] == idx[k]:
i_squeeze = i.squeeze()
v_idx = [(i_squeeze == j).nonzero() for j in idx] # <- doesn't seem optimal...
v_idx = torch.cat(v_idx, dim=1)

# Slicing `v` accordingly:
v_sliced = v[v_idx.squeeze()][:,idx]

# Now defining your resulting sparse tensor.
# I'm not sure what kind of indexing you want, so here are 2 possibilities:
# 1) "Dense" indixing:
test1x = torch.sparse.FloatTensor(torch.arange(v_idx.size(1)).long().unsqueeze(0), v_sliced)
print(test1x)
# torch.sparse.FloatTensor of size (3,2) with indices:
#
# 0 1
# [torch.LongTensor of size (1,2)]
# and values:
#
# 7 0
# 2 3
# [torch.FloatTensor of size (2,2)]

# 2) "Sparse" indixing using the original `idx`:
test1x = torch.sparse.FloatTensor(autograd.Variable(torch.LongTensor(idx)).unsqueeze(0), v_sliced)
# note: this indexing would fail if elements of `idx` were not in `i`.
print(test1x)
# torch.sparse.FloatTensor of size (3,2) with indices:
#
# 1 2
# [torch.LongTensor of size (1,2)]
# and values:
#
# 7 0
# 2 3
# [torch.FloatTensor of size (2,2)]

关于python - 列/行切片 torch 稀疏张量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50666440/

40 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com