- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
所以我试图用多个数据集来污染我的 CNN 并且当我添加足够的数据时(例如当我将多个集合作为一个集合添加或当我尝试添加具有超过一百万个样本的集合时)它会接缝抛出一个 ResourceExhaustedError
。
至于说明here ,我尝试添加
from keras.backend.tensorflow_backend import set_session
import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
我的代码,但这并没有什么不同。我在打印出 config.gpu_options.per_process_gpu_memory_fraction
后看到 0.3,这样部分接缝就可以了。
我什至加入了一个 config.gpu_options.allow_growth = True
以确保很好,但它并不想做任何事情,而是尝试一次使用所有内存,结果却发现它还不够。
我试图用来训练这个 CNN 的计算机有 4 个 GTX1080 Ti,每个都有 12GB 的专用内存。
编辑:很抱歉没有说明我是如何加载数据的,老实说我没有意识到有不止一种方法。在我学习的时候,他们总是有示例加载已经内置的数据集,我花了一段时间才意识到如何加载一个自提供的数据集。
我这样做的方式是创建两个 numpy 数组。一个具有路径或每个图像,另一个具有相应的标签。这是最基本的例子:
data_dir = "folder_name"
# There is a folder for every form and in that folder is every line of that form
for filename in glob.glob(os.path.join(data_dir, '*', '*')):
# the format for file names are: "{author id}-{form id}-{line number}.png"
# filename is a path to the file so .split('\\')[-1] get's the raw file name without the path and .split('-')[0] get's the author id
authors.append(filename.split('\\')[-1].split('-')[0])
files.append(filename)
#keras requires numpy arrays
img_files = np.asarray(files)
img_targets = np.asarray(authors)
最佳答案
您确定您没有使用巨大的 batch_size
吗?
“添加数据”:老实说,我不知道那是什么意思,如果你能用代码准确描述你在这里做什么,那将会有所帮助。
样本数量应该不会对 GPU 内存造成任何问题。导致问题的是大batch_size
。
加载庞大的数据集可能会导致 CPU RAM 问题,这与 keras/tensorflow 无关。 numpy 数组太大的问题。 (您可以通过“不创建任何模型”简单地加载数据来测试这一点)
如果这是您的问题,您应该使用生成器
逐渐加载批处理。同样,由于您的问题中绝对没有代码,因此我们无能为力。
但这是简单地为图像创建生成器的两种形式:
ImageDataGenerator
及其 flow_from_directory()
方法,explained here yield
的循环循环生成器的简单示例:
def imageBatchGenerator(imageFiles, imageLabels, batch_size):
while True:
batches = len(imageFiles) // batch_size
if len(imageFiles) % batch_size > 0:
batches += 1
for b in range(batches):
start = b * batch_size
end = (b+1) * batch_size
images = loadTheseImagesIntoNumpy(imageFiles[start:end])
labels = imageLabels[start:end]
yield images,labels
Warning: even with generators, you must make sure your batch size is not too big!
使用它:
model.fit_generator(imageBatchGenerator(files,labels,batchSize), steps_per_epoch = theNumberOfBatches, epochs= ....)
您应该能够决定哪些层由哪个 GPU 处理,这“可以”优化您的 RAM 使用。
示例,创建模型时:
with tf.device('/gpu:0'):
createLayersThatGoIntoGPU0
with tf.device('/gpu:1'):
createLayersThatGoIntoGPU1
#you will probably need to go back to a previous GPU, as you must define your layers in a proper sequence
with tf.device('/cpu:0'):
createMoreLayersForGPU0
#and so on
我不确定这会不会更好,但也值得一试。
在此处查看更多详细信息:https://keras.io/getting-started/faq/#how-can-i-run-a-keras-model-on-multiple-gpus
关于python - Keras 与 TensorFlow : Use memory as it's needed [ResourceExhaustedError],我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/51034355/
我有兴趣在 tf.keras 中训练一个模型,然后用 keras 加载它。我知道这不是高度建议,但我对使用 tf.keras 来训练模型很感兴趣,因为 tf.keras 更容易构建输入管道 我想利用
我进行了大量搜索,但仍然无法弄清楚如何编写具有多个交互输出的自定义损失函数。 我有一个神经网络定义为: def NeuralNetwork(): inLayer = Input((2,));
我正在阅读一篇名为 Differential Learning Rates 的文章在 Medium 上,想知道这是否可以应用于 Keras。我能够找到在 pytorch 中实现的这项技术。这可以在 K
我正在实现一个神经网络分类器,以打印我正在使用的这个神经网络的损失和准确性: score = model.evaluate(x_test, y_test, verbose=False) model.m
我最近在查看模型摘要时遇到了这个问题。 我想知道,[(None, 16)] 和有什么区别?和 (None, 16) ?为什么输入层有这样的输入形状? 来源:model.summary() can't
我正在尝试使用 Keras 创建自定义损失函数。我想根据输入计算损失函数并预测神经网络的输出。 我尝试在 Keras 中使用 customloss 函数。我认为 y_true 是我们为训练提供的输出,
我有一组样本,每个样本都是一组属性的序列(例如,一个样本可以包含 10 个序列,每个序列具有 5 个属性)。属性的数量总是固定的,但序列的数量(时间戳)可能因样本而异。我想使用这个样本集在 Keras
Keras 在训练集和测试集文件夹中发现了错误数量的类。我有 3 节课,但它一直说有 4 节课。有人可以帮我吗? 这里的代码: cnn = Sequential() cnn.add(Conv2D(32
我想编写一个自定义层,在其中我可以在两次运行之间将变量保存在内存中。例如, class MyLayer(Layer): def __init__(self, out_dim = 51, **kwarg
我添加了一个回调来降低学习速度: keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=100,
在 https://keras.io/layers/recurrent/我看到 LSTM 层有一个 kernel和一个 recurrent_kernel .它们的含义是什么?根据我的理解,我们需要 L
问题与标题相同。 我不想打开 Python,而是使用 MacOS 或 Ubuntu。 最佳答案 Python 库作者将版本号放入 .__version__ 。您可以通过在命令行上运行以下命令来打印它:
Keras 文档并不清楚这实际上是什么。我知道我们可以用它来将输入特征空间压缩成更小的空间。但从神经设计的角度来看,这是如何完成的呢?它是一个自动编码器,RBM吗? 最佳答案 据我所知,嵌入层是一个简
我想实现[http://ydwen.github.io/papers/WenECCV16.pdf]中解释的中心损失]在喀拉斯 我开始创建一个具有 2 个输出的网络,例如: inputs = Input
我正在尝试实现多对一模型,其中输入是大小为 的词向量d .我需要输出一个大小为 的向量d 在 LSTM 结束时。 在此 question ,提到使用(对于多对一模型) model = Sequenti
我有不平衡的训练数据集,这就是我构建自定义加权分类交叉熵损失函数的原因。但问题是我的验证集是平衡的,我想使用常规的分类交叉熵损失。那么我可以在 Keras 中为验证集传递不同的损失函数吗?我的意思是用
DL 中的一项常见任务是将输入样本归一化为零均值和单位方差。可以使用如下代码“手动”执行规范化: mean = np.mean(X, axis = 0) std = np.std(X, axis =
我正在尝试学习 Keras 并使用 LSTM 解决分类问题。我希望能够绘制 准确率和损失,并在训练期间更新图。为此,我正在使用 callback function . 由于某种原因,我在回调中收到的准
在 Keras 内置函数中嵌入使用哪种算法?Word2vec?手套?其他? https://keras.io/layers/embeddings/ 最佳答案 简短的回答是都不是。本质上,GloVe 的
我有一个使用 Keras 完全实现的 LSTM RNN,我想使用梯度剪裁,梯度范数限制为 5(我正在尝试复制一篇研究论文)。在实现神经网络方面,我是一个初学者,我将如何实现? 是否只是(我正在使用 r
我是一名优秀的程序员,十分优秀!