- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
似乎普遍认为使用 np.take
比数组索引要快得多。例如http://wesmckinney.com/blog/numpy-indexing-peculiarities/ , Fast numpy fancy indexing , 和 Fast(er) numpy fancy indexing and reduction? .也有人建议 np.ix_
在某些情况下更好。
我做了一些分析,在大多数情况下这似乎是正确的,尽管随着数组变大,差异会减小。
性能受数组大小、索引长度(对于行)和所采用的列数的影响。行数似乎影响最大,即使索引为 1D,数组中的列数也有影响。更改索引的大小似乎不会对方法之间产生太大影响。
所以,问题有两个方面:1. 为什么方法之间的性能差异如此之大?2. 什么时候使用一种方法优于另一种方法?是否有一些数组类型、顺序或形状总是可以更好地工作?
有很多因素可能会影响性能,所以我在下面展示了其中的一些,并包含了用于尝试使其可重现的代码。
编辑 我更新了图中的 y 轴以显示完整的值范围。它更清楚地表明差异比 1D 数据看起来要小。
查看运行时间与行数的比较表明索引非常一致,略有上升趋势。随着行数的增加,take
始终较慢。
随着列数的增加,两者都变慢了,但是 take
的增加幅度更大(这仍然是针对一维索引)。
与 2D 数据结果相似。还显示了使用 ix_
,它的整体性能似乎最差。
from pylab import *
import timeit
def get_test(M, T, C):
"""
Returns an array and random sorted index into rows
M : number of rows
T : rows to take
C : number of columns
"""
arr = randn(M, C)
idx = sort(randint(0, M, T))
return arr, idx
def draw_time(call, N=10, V='M', T=1000, M=5000, C=300, **kwargs):
"""
call : function to do indexing, accepts (arr, idx)
N : number of times to run timeit
V : string indicating to evaluate number of rows (M) or rows taken (T), or columns created(C)
** kwargs : passed to plot
"""
pts = {
'M': [10, 20, 50, 100, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, ],
'T': [10, 50, 100, 500, 1000, 5000, 10000, 50000],
'C': [5, 10, 20, 50, 100, 200, 500, 1000],
}
res = []
kw = dict(T=T, M=M, C=C) ## Default values
for v in pts[V]:
kw[V] = v
try:
arr, idx = get_test(**kw)
except CallerError:
res.append(None)
else:
res.append(timeit.timeit(lambda :call(arr, idx), number=N))
plot(pts[V], res, marker='x', **kwargs)
xscale('log')
ylabel('runtime [s]')
if V == 'M':
xlabel('size of array [rows]')
elif V == 'T':
xlabel('number of rows taken')
elif V == 'C':
xlabel('number of columns created')
funcs1D = {
'fancy':lambda arr, idx: arr[idx],
'take':lambda arr, idx: arr.take(idx, axis=0),
}
cidx = r_[1, 3, 7, 15, 29]
funcs2D = {
'fancy2D':lambda arr, idx: arr[idx.reshape(-1, 1), cidx],
'take2D':lambda arr, idx: arr.take(idx.reshape(-1, 1)*arr.shape[1] + cidx),
'ix_':lambda arr, idx: arr[ix_(idx, cidx)],
}
def test(funcs, N=100, **kwargs):
for descr, f in funcs.items():
draw_time(f, label="{}".format(descr), N=100, **kwargs)
legend()
figure()
title('1D index, 30 columns in data')
test(funcs1D, V='M')
ylim(0, 0.25)
# savefig('perf_1D_arraysize', C=30)
figure()
title('1D index, 5000 rows in data')
test(funcs1D, V='C', M=5000)
ylim(0, 0.07)
# savefig('perf_1D_numbercolumns')
figure()
title('2D index, 300 columns in data')
test(funcs2D, V='M')
ylim(0, 0.01)
# savefig('perf_2D_arraysize')
figure()
title('2D index, 30 columns in data')
test(funcs2D, V='M')
ylim(0, 0.01)
# savefig('perf_2D_arraysize_C30', C=30)
最佳答案
答案是非常低级别,并且与 C 编译器和 CPU 缓存优化有关。请参阅与 Sebastian Berg 和 Max Bolingbroke(均为 numpy 的贡献者)就此进行的积极讨论 numpy issue .
花式索引试图在内存的读写方式(C 顺序与 F 顺序)方面变得“智能”,而 .take
将始终保持 C 顺序。这意味着花式索引对于 F 序数组通常要快得多,并且在任何情况下对于大数组都应该更快。现在,numpy 在不考虑数组大小或运行它的特定硬件的情况下决定什么是“智能”方式。因此,对于较小的阵列,由于更好地使用 CPU 缓存中的读取,选择“错误”的内存顺序实际上可能会获得更好的性能。
关于python - 为什么 `arr.take(idx)` 比 `arr[idx]` 快,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55126938/
这看起来很基础,但我想不通。是否有一种简单的 CSS 唯一方法可以使 cssa 真正快速淡入并缓慢淡出。这是为了改变多个 div 的颜色。大约 0.5 秒的缓入和 2 秒的缓出。 谢谢! 最佳答案 你
我一直在用各种语言和实现实现相同的代码(在 Blackjack 中发牌而不爆牌的方法的数量)。我注意到的一个奇怪之处是,Python 在 C 中调用分区函数的实现实际上比用 C 编写的整个程序快一点。
如果我没看错,/ 意味着它右边的节点必须是左边节点的直接子节点,例如/ul/li 返回 li 项,它们是作为文档根的 ul 项的直接子项。 //ul//li 返回 li 项,它们是文档中某处任何 ul
如何随机更新一个表。所以你给一列一个随机值。并且该列(例如“顶部”)是唯一的。如果您在数字 10 到 20 之间进行选择,并且您有 10 行,那么您就不能有未使用的数字。如果你有 Test table
这在一小部分是一个问题(因为我不明白为什么它会有所不同),在很大程度上是一篇希望能帮助其他一些可怜的程序员的帖子。 我有一个代码库,是我大约 5-7 年前第一次开始 Android 编程时编写的,它具
我正在尝试过滤关系表以获得满足两个条件的表子集(即:我想要 color_ids 为 1 或 2 的条目的所有 ID)。这是一张结实的 table ,所以我正在尝试尽可能多地进行优化。 我想知道是否有人
在上一篇《聊聊PHP中require_once()函数为什么不好用》中给大家介绍了PHP中require_once()为什么不好用的原因,感兴趣的朋友可以去阅读了解一下~ 那么本文将给大家介绍PH
很难说出这里问的是什么。这个问题模棱两可、含糊不清、不完整、过于宽泛或言辞激烈,无法以目前的形式合理回答。如需帮助澄清此问题以便可以重新打开,visit the help center . 10年前关
有没有办法提高glReadPixels的速度?目前我做: Gdx.gl.glReadPixels(0, 0, Gdx.graphics.getWidth(), Gdx.graphics.getHeig
通常,我以函数形式`:=`()来计算data.table中的多列,认为这是最有效的方法。但是我最近发现它比简单地重复使用:=慢。至少在我的电脑上。 我猜想:=的功能形式可能会产生一些开销,但这是它变慢
我的问题是针对 Windows 环境中多线程的性能问题。 在测试我的代码后,我得到的结果是增加线程数不会提高并行计算的性能,并且在经过一些计数后变得更少。到底是怎么回事?是否可以找出最佳线程数的公式:
我看到很少有相同问题的主题,但我仍然无法解决我的问题。这是我的代码 - 使用 XOR 加密的 C 套接字编程 当服务器和客户端连接时:- 用户发送消息,例如:你好- 服务器响应,例如:(服务器):你好
我正在定义继承自 Shape 类并实现“几何”属性的形状。 这是一个例子: public class Landmark : Shape { public override bool IsInB
相同代码在 Android(1Ghz Snapdragon)上的执行速度比我在 3.3 Ghz Core 2 Duo 的 PC(在桌面应用程序中)快 2 倍(PC 的类被复制到 Android 项目)
我需要将一个值与一组数组进行比较。但是,我需要比较 foreach 中的多个值。如果使用 in_array,它可能会很慢,真的很慢。有没有更快的选择?我当前的代码是 foreach($a as $b)
这个问题在这里已经有了答案: How do I write a correct micro-benchmark in Java? (11 个答案) 关闭 9 年前。 今天我做了一个简单的测试来比较
如果比较不应该以这种方式进行,我深表歉意。我是编程新手,只是很好奇为什么会这样。 我有一个包含词嵌入的大型二进制文件 (4.5gb)。每行都有一个单词,后面跟着它的嵌入,它由 300 个浮点值组成。我
我经历了几个不同的四元数乘法实现,但我很惊讶地发现引用实现是迄今为止我最快的实现。这是有问题的实现: inline static quat multiply(const quat& lhs, cons
我写了一个简单的例子,估计调用虚函数的平均时间,使用基类接口(interface)和dynamic_cast和调用非虚函数。这是它: #include #include #include #in
有没有人知道比“StackWalk”更好/更快的获取调用堆栈的方法?我还认为 stackwalk 在有很多变量的方法上也会变慢......(我想知道商业分析员是做什么的?)我在 Windows 上使用
我是一名优秀的程序员,十分优秀!