- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试在 networkx
边缘上绘制轮廓 (linestyle=":"
)。我似乎无法弄清楚如何对 matplotlib
patch
对象执行此操作? 现在有人知道如何操作这些补丁
对象来绘制这些“边缘”的轮廓吗?如果这不可能,有人知道如何获取线数据以使用ax.plot(x,y,linestyle=":")
分别做这个?
import networkx as nx
import numpy as np
from collections import *
# Graph data
G = {'y1': OrderedDict([('y2', OrderedDict([('weight', 0.8688325076457851)])), (1, OrderedDict([('weight', 0.13116749235421485)]))]), 'y2': OrderedDict([('y3', OrderedDict([('weight', 0.29660515972204304)])), ('y4', OrderedDict([('weight', 0.703394840277957)]))]), 'y3': OrderedDict([(4, OrderedDict([('weight', 0.2858185316736193)])), ('y5', OrderedDict([('weight', 0.7141814683263807)]))]), 4: OrderedDict(), 'input': OrderedDict([('y1', OrderedDict([('weight', 1.0)]))]), 'y4': OrderedDict([(3, OrderedDict([('weight', 0.27847763084646443)])), (5, OrderedDict([('weight', 0.7215223691535356)]))]), 3: OrderedDict(), 5: OrderedDict(), 'y5': OrderedDict([(6, OrderedDict([('weight', 0.5733512797415756)])), (2, OrderedDict([('weight', 0.4266487202584244)]))]), 6: OrderedDict(), 1: OrderedDict(), 2: OrderedDict()}
G = nx.from_dict_of_dicts(G)
G_scaffold = {'input': OrderedDict([('y1', OrderedDict())]), 'y1': OrderedDict([('y2', OrderedDict()), (1, OrderedDict())]), 'y2': OrderedDict([('y3', OrderedDict()), ('y4', OrderedDict())]), 1: OrderedDict(), 'y3': OrderedDict([(4, OrderedDict()), ('y5', OrderedDict())]), 'y4': OrderedDict([(3, OrderedDict()), (5, OrderedDict())]), 4: OrderedDict(), 'y5': OrderedDict([(6, OrderedDict()), (2, OrderedDict())]), 3: OrderedDict(), 5: OrderedDict(), 6: OrderedDict(), 2: OrderedDict()}
G_scaffold = nx.from_dict_of_dicts(G_scaffold)
G_sem = {'y1': OrderedDict([('y2', OrderedDict([('weight', 0.046032370518141796)])), (1, OrderedDict([('weight', 0.046032370518141796)]))]), 'y2': OrderedDict([('y3', OrderedDict([('weight', 0.08764771571290508)])), ('y4', OrderedDict([('weight', 0.08764771571290508)]))]), 'y3': OrderedDict([(4, OrderedDict([('weight', 0.06045928834718992)])), ('y5', OrderedDict([('weight', 0.06045928834718992)]))]), 4: OrderedDict(), 'input': OrderedDict([('y1', OrderedDict([('weight', 0.0)]))]), 'y4': OrderedDict([(3, OrderedDict([('weight', 0.12254141747735424)])), (5, OrderedDict([('weight', 0.12254141747735425)]))]), 3: OrderedDict(), 5: OrderedDict(), 'y5': OrderedDict([(6, OrderedDict([('weight', 0.11700701511079069)])), (2, OrderedDict([('weight', 0.11700701511079069)]))]), 6: OrderedDict(), 1: OrderedDict(), 2: OrderedDict()}
G_sem = nx.from_dict_of_dicts(G_sem)
# Edge info
edge_input = ('input', 'y1')
weights_sem = np.array([G_sem[u][v]['weight']for u,v in G_sem.edges()]) * 256
# Layout
pos = nx.nx_agraph.graphviz_layout(G_scaffold, prog="dot", root="input")
# Plotting graph
pad = 10
with plt.style.context("ggplot"):
fig, ax = plt.subplots(figsize=(8,8))
linecollection = nx.draw_networkx_edges(G_sem, pos, alpha=0.5, edges=G_sem.edges(), arrowstyle="-", edge_color="#000000", width=weights_sem)
x = np.stack(pos.values())[:,0]
y = np.stack(pos.values())[:,1]
ax.set(xlim=(x.min()-pad,x.max()+pad), ylim=(y.min()-pad, y.max()+pad))
for path, lw in zip(linecollection.get_paths(), linecollection.get_linewidths()):
x = path.vertices[:,0]
y = path.vertices[:,1]
w = lw/4
theta = np.arctan2(y[-1] - y[0], x[-1] - x[0])
# ax.plot(x, y, color="blue", linestyle=":")
ax.plot((x-np.sin(theta)*w), y+np.cos(theta)*w, color="blue", linestyle=":")
ax.plot((x+np.sin(theta)*w), y-np.cos(theta)*w, color="blue", linestyle=":")
经过几次思想实验,我意识到我需要计算角度然后相应地调整垫子:
例如,如果线是完全垂直的(在 90 或 -90),则 y 坐标根本不会移动,而 x 坐标会移动。角度为 0 或 180 的线会发生相反的情况。
然而,它仍然有点偏离。
我怀疑这是相关的: matplotlib - Expand the line with specified width in data unit?
我不认为linewidth
直接转换为数据空间
或者,如果可以将这些线集合转换为矩形对象,那也是可能的。
最佳答案
将一定宽度的线围成另一条线的问题是,线是用数据坐标定义的,而线宽是物理单位,即点。这通常是可取的,因为它允许线宽独立于数据范围、缩放级别等。它还确保线的末端始终垂直于线,与轴方向无关。
因此线条的轮廓始终处于混合坐标系中,最终的外观在使用渲染器绘制实际线条之前并不确定。因此,对于考虑(可能变化的)坐标的解决方案,需要确定图形当前状态的轮廓。
一种选择是使用新的艺术家,它将现有的 LineCollection
作为输入,并根据线条在像素空间中的当前位置创建新的变换。
下面我选择了一个PatchCollection
。从一个矩形开始,我们可以缩放和旋转它,然后将它平移到原始直线的位置。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection, PatchCollection
import matplotlib.transforms as mtrans
class OutlineCollection(PatchCollection):
def __init__(self, linecollection, ax=None, **kwargs):
self.ax = ax or plt.gca()
self.lc = linecollection
assert np.all(np.array(self.lc.get_segments()).shape[1:] == np.array((2,2)))
rect = plt.Rectangle((-.5, -.5), width=1, height=1)
super().__init__((rect,), **kwargs)
self.set_transform(mtrans.IdentityTransform())
self.set_offsets(np.zeros((len(self.lc.get_segments()),2)))
self.ax.add_collection(self)
def draw(self, renderer):
segs = self.lc.get_segments()
n = len(segs)
factor = 72/self.ax.figure.dpi
lws = self.lc.get_linewidth()
if len(lws) <= 1:
lws = lws*np.ones(n)
transforms = []
for i, (lw, seg) in enumerate(zip(lws, segs)):
X = self.lc.get_transform().transform(seg)
mean = X.mean(axis=0)
angle = np.arctan2(*np.squeeze(np.diff(X, axis=0))[::-1])
length = np.sqrt(np.sum(np.diff(X, axis=0)**2))
trans = mtrans.Affine2D().scale(length,lw/factor).rotate(angle).translate(*mean)
transforms.append(trans.get_matrix())
self._transforms = transforms
super().draw(renderer)
请注意实际变换是如何仅在draw
时计算的。这确保它们考虑了像素空间中的实际位置。
用法可能看起来像
verts = np.array([[[5,10],[5,5]], [[5,5],[8,2]], [[5,5],[1,4]], [[1,4],[2,0]]])
plt.rcParams["axes.xmargin"] = 0.1
fig, (ax1, ax2) = plt.subplots(ncols=2, sharex=True, sharey=True)
lc1 = LineCollection(verts, color="k", alpha=0.5, linewidth=20)
ax1.add_collection(lc1)
olc1 = OutlineCollection(lc1, ax=ax1, linewidth=2,
linestyle=":", edgecolor="black", facecolor="none")
lc2 = LineCollection(verts, color="k", alpha=0.3, linewidth=(10,20,40,15))
ax2.add_collection(lc2)
olc2 = OutlineCollection(lc2, ax=ax2, linewidth=3,
linestyle="--", edgecolors=["r", "b", "gold", "indigo"],
facecolor="none")
for ax in (ax1,ax2):
ax.autoscale()
plt.show()
现在的想法当然是使用问题中的 linecollection
对象而不是上面的 lc1
对象。这应该很容易在代码中替换。
关于python - 如何在 Python 中的 Matplotlib 线上绘制外边缘的轮廓?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/55911075/
我将 Bootstrap 与 css 和 java 脚本结合使用。在不影响前端代码的情况下,我真的很难在css中绘制这个背景。在许多问题中,人们将宽度和高度设置为 0%。但是由于我的导航栏,我不能使用
我正在用 c 编写一个程序来读取文件的内容。代码如下: #include void main() { char line[90]; while(scanf("%79[^\
我想使用 javascript 获取矩阵数组的所有对 Angular 线。假设输入输出如下: input = [ [1,2,3], [4,5,6], [7,8,9], ] output =
可以用pdfmake绘制lines,circles和other shapes吗?如果是,是否有documentation或样本?我想用jsPDF替换pdfmake。 最佳答案 是的,有可能。 pdfm
我有一个小svg小部件,其目的是显示角度列表(参见图片)。 现在,角度是线元素,仅具有笔触,没有填充。但是现在我想使用一种“内部填充”颜色和一种“笔触/边框”颜色。我猜想line元素不能解决这个问题,
我正在为带有三角对象的 3D 场景编写一个非常基本的光线转换器,一切都工作正常,直到我决定尝试从场景原点 (0/0/0) 以外的点转换光线。 但是,当我将光线原点更改为 (0/1/0) 时,相交测试突
这个问题已经有答案了: Why do people write "#!/usr/bin/env python" on the first line of a Python script? (22 个回
如何使用大约 50 个星号 * 并使用 for 循环绘制一条水平线?当我尝试这样做时,结果是垂直(而不是水平)列出 50 个星号。 public void drawAstline() { f
这是一个让球以对角线方式下降的 UI,但球保持静止;线程似乎无法正常工作。你能告诉我如何让球移动吗? 请下载一个球并更改目录,以便程序可以找到您的球的分配位置。没有必要下载足球场,但如果您愿意,也可以
我在我的一个项目中使用 Jmeter 和 Ant,当我们生成报告时,它会在报告中显示 URL、#Samples、失败、成功率、平均时间、最短时间、最长时间。 我也想在报告中包含 90% 的时间线。 现
我有一个不寻常的问题,希望有人能帮助我。我想用 Canvas (android) 画一条 Swing 或波浪线,但我不知道该怎么做。它将成为蝌蚪的尾部,所以理想情况下我希望它的形状更像三角形,一端更大
这个问题已经有答案了: Checking Collision of Shapes with JavaFX (1 个回答) 已关闭 8 年前。 我正在使用 JavaFx 8 库。 我的任务很简单:我想检
如何按编号的百分比拆分文件。行数? 假设我想将我的文件分成 3 个部分(60%/20%/20% 部分),我可以手动执行此操作,-_-: $ wc -l brown.txt 57339 brown.tx
我正在努力实现这样的目标: 但这就是我设法做到的。 你能帮我实现预期的结果吗? 更新: 如果我删除 bootstrap.css 依赖项,问题就会消失。我怎样才能让它与 Bootstrap 一起工作?
我目前正在构建一个网站,但遇到了 transform: scale 的问题。我有一个按钮,当用户将鼠标悬停在它上面时,会发生两件事: 背景以对 Angular 线“扫过” 按钮标签颜色改变 按钮稍微变
我需要使用直线和仿射变换绘制大量数据点的图形(缩放图形以适合 View )。 目前,我正在使用 NSBezierPath,但我认为它效率很低(因为点在绘制之前被复制到贝塞尔路径)。通过将我的数据切割成
我正在使用基于 SVM 分类的 HOG 特征检测器。我可以成功提取车牌,但提取的车牌除了车牌号外还有一些不必要的像素/线。我的图像处理流程如下: 在灰度图像上应用 HOG 检测器 裁剪检测到的区域 调
我有以下图片: 我想填充它的轮廓(即我想在这张图片中填充线条)。 我尝试了形态学闭合,但使用大小为 3x3 的矩形内核和 10 迭代并没有填满整个边界。我还尝试了一个 21x21 内核和 1 迭代,但
我必须找到一种算法,可以找到两组数组之间的交集总数,而其中一个数组已排序。 举个例子,我们有这两个数组,我们向相应的数字画直线。 这两个数组为我们提供了总共 7 个交集。 有什么样的算法可以帮助我解决
简单地说 - 我想使用透视投影从近裁剪平面绘制一条射线/线到远裁剪平面。我有我认为是使用各种 OpenGL/图形编程指南中描述的方法通过单击鼠标生成的正确标准化的世界坐标。 我遇到的问题是我的光线似乎
我是一名优秀的程序员,十分优秀!