- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
出于性能原因,
我很好奇是否有一种方法可以将一堆矩阵相乘。我有一个 4 维数组(500、201、2、2)。它基本上是一个 500 个长度的 (201,2,2) 矩阵堆栈,对于 500 个矩阵中的每一个,我想使用 einsum 将相邻矩阵相乘并得到另一个 (201,2,2) 矩阵。
最后我只对 [2x2] 矩阵进行矩阵乘法。由于我的解释已经偏离轨道,我将只展示我现在正在做的事情,以及“减少”等效项以及为什么它没有帮助(因为它在计算上的速度相同)。最好这将是一个 NumPy 的单行,但我不知道那是什么,或者即使它可能。
Arr = rand(500,201,2,2)
def loopMult(Arr):
ArrMult = Arr[0]
for i in range(1,len(Arr)):
ArrMult = np.einsum('fij,fjk->fik', ArrMult, Arr[i])
return ArrMult
def myeinsum(A1, A2):
return np.einsum('fij,fjk->fik', A1, A2)
A1 = loopMult(Arr)
A2 = reduce(myeinsum, Arr)
print np.all(A1 == A2)
print shape(A1); print shape(A2)
%timeit loopMult(Arr)
%timeit reduce(myeinsum, Arr)
True
(201, 2, 2)
(201, 2, 2)
10 loops, best of 3: 34.8 ms per loop
10 loops, best of 3: 35.2 ms per loop
如有任何帮助,我们将不胜感激。一切正常,但当我必须对大量参数进行迭代时,代码往往会花费很长时间,我想知道是否有办法通过一个循环避免 500 次迭代。
最佳答案
我不认为使用 numpy 可以有效地做到这一点(虽然 cumprod
解决方案很优雅)。在这种情况下,我会使用 f2py
。这是调用我所知道的更快语言的最简单方法,并且只需要一个额外的文件。
fortran.f90:
subroutine multimul(a, b)
implicit none
real(8), intent(in) :: a(:,:,:,:)
real(8), intent(out) :: b(size(a,1),size(a,2),size(a,3))
real(8) :: work(size(a,1),size(a,2))
integer i, j, k, l, m
!$omp parallel do private(work,i,j)
do i = 1, size(b,3)
b(:,:,i) = a(:,:,i,size(a,4))
do j = size(a,4)-1, 1, -1
work = matmul(b(:,:,i),a(:,:,i,j))
b(:,:,i) = work
end do
end do
end subroutine
使用 f2py -c -m fortran fortran.f90
编译(或 F90FLAGS="-fopenmp"f2py -c -m fortran fortran.f90 -lgomp
以启用 OpenMP加速度)。然后你会在你的脚本中使用它作为
import numpy as np, fmuls
Arr = np.random.standard_normal([500,201,2,2])
def loopMult(Arr):
ArrMult = Arr[0]
for i in range(1,len(Arr)):
ArrMult = np.einsum('fij,fjk->fik', ArrMult, Arr[i])
return ArrMult
def myeinsum(A1, A2):
return np.einsum('fij,fjk->fik', A1, A2)
A1 = loopMult(Arr)
A2 = reduce(myeinsum, Arr)
A3 = fmuls.multimul(Arr.T).T
print np.allclose(A1,A2)
print np.allclose(A1,A3)
%timeit loopMult(Arr)
%timeit reduce(myeinsum, Arr)
%timeit fmuls.multimul(Arr.T).T
哪些输出
True
True
10 loops, best of 3: 48.4 ms per loop
10 loops, best of 3: 48.8 ms per loop
100 loops, best of 3: 5.82 ms per loop
所以这是 8 倍的加速。所有转置的原因是 f2py
隐式转置了所有数组,我们需要手动转置它们以告诉它我们的 fortran 代码期望进行转置。这避免了复制操作。代价是我们的每个 2x2 矩阵都被转置,因此为了避免执行错误的操作,我们必须反向循环。
大于 8 的加速应该是可能的——我没有花任何时间来优化它。
关于Python、numpy、einsum 将一叠矩阵相乘,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25981180/
假设我有两个矩阵,每个矩阵有两列和不同的行数。我想检查并查看一个矩阵的哪些对在另一个矩阵中。如果这些是一维的,我通常只会做 a %in% x得到我的结果。 match似乎只适用于向量。 > a
关闭。这个问题是opinion-based .它目前不接受答案。 想要改进这个问题? 更新问题,以便 editing this post 可以用事实和引用来回答它. 关闭 9 个月前。 Improv
我只处理过 DirectX 矩阵 我读过一些文章,说不能将 DirectX 矩阵数学库用于 openGL 矩阵。 但我也读过,如果你的数学是一致的,你可以获得类似的结果。那只会让我更加困惑。 任何人都
我编写了一个C++代码来解决线性系统A.x = b,其中A是一个对称矩阵,方法是首先使用LAPACK(E)对角矩阵A = V.D.V^T(因为以后需要特征值),然后求解x = A^-1.b = V^T
我遇到了问题。我想创建二维数组 rows=3 cols=2我的代码如下 int **ptr; int row=3; int col=2; ptr=new int *[col]; for (int i=
我有一个 3d mxnxt 矩阵,我希望能够提取 t 2d nxm 矩阵。在我的例子中,我有一个 1024x1024x10 矩阵,我想要 10 张图像显示给我。 这不是 reshape ,我每次只需要
我在 MATLAB 中有一个 3d 矩阵 (n-by-m-by-t) 表示一段时间内网格中的 n-by-m 测量值.我想要一个二维矩阵,其中空间信息消失了,只剩下 n*m 随着时间 t 的测量值(即:
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
作为一个简化的示例,我有一个 3D numpy 矩阵,如下所示: a = np.array([[[1,2], [4,np.nan], [7,
使用 eigen2 , 并给定一个矩阵 A a_0_0, a_0_1, a_0_2, ... a_1_0, a_1_0, a_1_2, ... ... 和一个矩阵B: b_0_0, b_0_1, b_
我想知道如何获得下面的布局。 在中型和大型设备上,我希望有 2 行和 2 列的布局(2 x 2 矩阵)。 在小型(和超小型)设备上或调整为小型设备时,我想要一个 4 行和 1 列的矩阵。 我将通过 a
有什么方法可以向量化以下内容: for i = 1:6 te = k(:,:,:,i).*(c(i)); end 我正在尝试将 4D 矩阵 k 乘以向量 c,方法是将其
如何从填充有 1 和 0 的矩阵中抽取 n 个随机点的样本? a=rep(0:1,5) b=rep(0,10) c=rep(1,10) dataset=matrix(cbind(a,b,c),nrow
我正在尝试创建一个包含 X 个 X 的矩阵。以下代码生成从左上角到右下角的 X 对 Angular 线,而不是从右上角到左下角的 X 对 Angular 线。我不确定从哪里开始。是否应该使用新变量创建
我想在 python 中创建一个每行三列的矩阵,并能够通过任何一行对它们进行索引。矩阵中的每个值都是唯一的。 据我所知,我可以设置如下矩阵: matrix = [["username", "name"
我有点迷茫 我创建了一个名为 person 的类,它具有 age 和 name 属性(以及 get set 方法)。然后在另一个类中,我想创建一个 persons 数组,其中每个人都有不同的年龄和姓名
我有 n 个类,它们要么堆叠,要么不堆叠。所有这些类都扩展了同一个类 (CellObject)。我知道更多类将添加到此列表中,我想创建一种易于在一个地方操纵“可堆叠性”的方法。 我正在考虑创建一个矩阵
我有一个包含 x 个字符串名称及其关联 ID 的文件。本质上是两列数据。 我想要的是一个格式为 x x x 的相关样式表(将相关数据同时作为 x 轴和 y 轴),但我想要 fuzzywuzzy 库的函
机器学习与传统编程的一个重要区别在于机器学习比传统编程涉及了更多的数学知识。不过,随着机器学习的飞速发展,各种框架应运而生,在数据分析等应用中使用机器学习时,使用现成的库和框架成为常态,似乎越来越不需
当我在 julia 中输入这个错误跳转但我不知道为什么,它应该工作。/ julia> A = [1 2 3 4; 5 6 7 8; 1 2 3 4; 5 6 7 8] 4×4 Array{Int64,
我是一名优秀的程序员,十分优秀!