- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个 200 万行 x 7 列的数据集,其中包含不同的家庭用电量测量值以及每个测量值的日期。
我将我的数据集放入 pandas 数据框中,选择除日期列之外的所有列,然后执行交叉验证拆分。
import pandas as pd
from sklearn.cross_validation import train_test_split
data = pd.read_csv('household_power_consumption.txt', delimiter=';')
power_consumption = data.iloc[0:, 2:9].dropna()
pc_toarray = power_consumption.values
hpc_fit, hpc_fit1 = train_test_split(pc_toarray, train_size=.01)
power_consumption.head()
我使用 K 均值分类,然后使用 PCA 降维来显示。
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
hpc = PCA(n_components=2).fit_transform(hpc_fit)
k_means = KMeans()
k_means.fit(hpc)
x_min, x_max = hpc[:, 0].min() - 5, hpc[:, 0].max() - 1
y_min, y_max = hpc[:, 1].min(), hpc[:, 1].max() + 5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = k_means.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(Z, interpolation='nearest',
extent=(xx.min(), xx.max(), yy.min(), yy.max()),
cmap=plt.cm.Paired,
aspect='auto', origin='lower')
plt.plot(hpc[:, 0], hpc[:, 1], 'k.', markersize=4)
centroids = k_means.cluster_centers_
inert = k_means.inertia_
plt.scatter(centroids[:, 0], centroids[:, 1],
marker='x', s=169, linewidths=3,
color='w', zorder=8)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
现在我想找出哪些行属于给定类,哪些日期属于给定类。
我是这个领域的新手,正在尝试通读大量代码,这是我看到的几个示例的汇编。
我的目标是对数据进行分类,然后获取属于某个类别的日期。
谢谢
最佳答案
在矢量量化文献中,cluster_centers_称为码本,predict返回的每个值是码本中距离最近的码的索引。
Parameters: (New data to predict)
X : {array-like, sparse matrix}, shape = [n_samples, n_features]
Returns: (Index of the cluster each sample belongs to)
labels : array, shape [n_samples,]
您提交的代码的问题是使用
train_test_split()
它返回数据集中随机行的两个数组,有效地破坏了数据集的顺序,使得很难将从 KMeans 分类返回的标签与数据集中的连续日期相关联。
这是一个例子:
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
#read data into pandas dataframe
df = pd.read_csv('household_power_consumption.txt', delimiter=';')
#convert merge date and time colums and convert to datetime objects
df['Datetime'] = pd.to_datetime(df['Date'] + ' ' + df['Time'])
df.set_index(pd.DatetimeIndex(df['Datetime'],inplace=True))
df.drop(['Date','Time'], axis=1, inplace=True)
#put last column first
cols = df.columns.tolist()
cols = cols[-1:] + cols[:-1]
df = df[cols]
df = df.dropna()
#convert dataframe to data array and removes date column not to be processed,
sliced = df.iloc[0:, 1:8].dropna()
hpc = sliced.values
k_means = KMeans()
k_means.fit(hpc)
# array of indexes corresponding to classes around centroids, in the order of your dataset
classified_data = k_means.labels_
#copy dataframe (may be memory intensive but just for illustration)
df_processed = df.copy()
df_processed['Cluster Class'] = pd.Series(classified_data, index=df_processed.index)
关于python - Sklearn.KMeans() : Get class centroid labels and reference to a dataset,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27504870/
如果我用 dataset.batch(n).prefetch(m), 将预提取m个批次或m个 sample ? 最佳答案 Dataset.prefetch(m) 转换预取其直接输入的m元素。在这种情况
根据 TensorFlow documentation 、tf.contrib.data.Dataset 类的 prefetch 和 map 方法,都有一个名为 buffer_size 的参数. 对于
我正在使用 Flink 0.10.1 的 DataSet API 编写应用程序。我可以在 Flink 中使用单个运算符获取多个收集器吗? 我想做的是如下所示: val lines = env.read
为了使用 Google Colabs TPU,我需要一个 tf.dataset.Dataset .那么如何在这样的数据集上使用数据增强? 更具体地说,到目前为止我的代码是: def get_datas
我有一个包含 2 个相关数据表(主数据表和详细信息)的数据集。我想将与我的过滤器匹配的数据(例如主数据列 A =“XXX”)复制到另一个数据集。 现在我发现这个过程需要很长时间(1k 条记录大约需要一
我正在使用 .pvd文件同时加载多个文件到 Paraviw。对于具有单个数据集的时间序列,该文件看起来像这样: 我想指定要与 a.*.vtu 一起加载的其他文件(
我听说 Google 主办(或将举办)一场网络分类竞赛,他们提供了一个大型(170k+ 文档)网站数据集,这些网站被分为多个类别(体育、计算机、科学等),我尝试环顾四周在他们的 2009 年到 201
谁能给我解释一下 DataSet.Copy() vs Dataset.Clone()也让我知道一些我们可以使用这些的场景 最佳答案 Clone 将创建一个新的空数据集,其架构(表和列)与旧数据集相同。
dataset = dataset.batch(50) dataset = dataset.prefetch(buffer_size=1) 是预取 1 个批次还是 1 个元素? 根据 tensorfl
在 Delphi 中,与 Dataset.Next 相比,使用 Dataset.Prior 是否会降低性能? 背景: 我有一个在数据集中搜索特定记录的例程。我从数据集中的最后一条记录开始,然后使用 D
我正在使用 Spark(2.0) 开发 Spark SQL,并使用 Java API 读取 CSV。 CSV 文件中有一个双引号、逗号分隔的列。例如:“Express Air,Delivery Tru
为什么要使用DataSet.BeginInit 和DataSet.EndInit? 我已经经历了official msdn documentation ,它说 Begins the initializ
我正在尝试向新的数据集 X 添加一个位于不同数据集 Y 中的数据表。如果我直接添加它,我会得到以下错误: DataTable already belongs to another DataSet. 我
我有一个表示为形状为 (num_features, num_examples) 的 NumPy 矩阵的数据集,我希望将其转换为 TensorFlow 类型 tf.Dataset。 我正在努力理解这两种
这是 question 的转发在 ai.stackexchange 中询问。由于该论坛没有太多吸引力,我想我可以在这里尝试一下机会。 我有一个特定对象的不同尺寸的图像数据集。该物体的一些图像也处于不同
我有两个数据集: main_ds = tf.data.Dataset.from_tensor_slices(list(range(1000, 1100))) backgroud_ds = tf.dat
拥有Dataset单列 json 字符串: +--------------------+ | value| +--------------------+ |{"Contex
我正在尝试解决 Azure 数据工厂中的以下场景: 我在 Azure Blob 存储中有大量文件夹。每个文件夹包含不同数量的 parquet 格式的文件。文件夹名称包含生成该文件夹中包含的数据的日期,
我正在尝试解决 Azure 数据工厂中的以下场景: 我在 Azure Blob 存储中有大量文件夹。每个文件夹包含不同数量的 parquet 格式的文件。文件夹名称包含生成该文件夹中包含的数据的日期,
我有一个顺序数据集,我可以从中创建窗口来训练 RNN。在某些情况下,我想扔掉某些 window 。但是,当我使用 dataset.window 和 dataset.filter 时,管道内部会出现一些
我是一名优秀的程序员,十分优秀!