- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试在 CNTK 中(使用 Python)实现 LSTM 来对序列进行分类。
输入:
特征是固定长度的数字序列(时间序列)
标签是单热值的向量
网络:
input = input_variable(input_dim)
label = input_variable(num_output_classes)
h = Recurrence(LSTM(lstm_dim)) (input)
final_output = C.sequence.last(h)
z = Dense(num_output_classes) (final_output)
loss = C.cross_entropy_with_softmax(z, label)
输出:序列与标签匹配的概率
所有尺寸都是固定的,所以我认为我不需要任何动态轴,也没有指定任何尺寸。
但是,CNTK 不高兴,我得到:
return cross_entropy_with_softmax(output_vector, target_vector, axis, name)
RuntimeError: Currently if an operand of a elementwise operation has any dynamic axes, those must match the dynamic axes of the other operands
如果(根据某些示例)我用动态轴定义标签
label = input_variable(num_output_classes, dynamic_axes=[C.Axis.default_batch_axis()])
它不再提示这个,并进一步:
tf = np.split(training_features,num_minibatches)
tl = np.split(training_labels, num_minibatches)
for i in range(num_minibatches*num_passes): # multiply by the
features = np.ascontiguousarray(tf[i%num_minibatches])
labels = np.ascontiguousarray(tl[i%num_minibatches])
# Specify the mapping of input variables in the model to actual minibatch data to be trained with
trainer.train_minibatch({input : features, label : labels})
但是死于这个错误:
File "C:\Users\Dev\Anaconda3\envs\cntk-py34\lib\site-packages\cntk\cntk_py.py", line 1745, in train_minibatch
return _cntk_py.Trainer_train_minibatch(self, *args)
RuntimeError: Node '__v2libuid__Plus561__v2libname__Plus552' (Plus operation): DataFor: FrameRange's dynamic axis is inconsistent with matrix: {numTimeSteps:1, numParallelSequences:100, sequences:[{seqId:0, s:0, begin:0, end:1}, {seqId:1, s:1, begin:0, end:1}, {seqId:2, s:2, begin:0, end:1}, {seqId:3, s:3, begin:0, end:1}, {seq...
我需要做什么来解决这个问题?
最佳答案
如果我的理解正确,那么您就有了一维输入序列。如果是这样,那么你的麻烦就出在这一行
input = input_variable(input_dim)
声明了一个 input_dim 维向量序列。如果你把它改成
input = input_variable(1)
那么我相信您最初的尝试应该会奏效。
更新:以上内容本身是不够的,因为获取序列最后一个元素的操作会创建一个输出,其动态轴与创建标签时使用的默认动态轴不同。一个简单的解决方法是在像这样定义输出 z
label = input_variable(num_output_classes, dynamic_axes=z.dynamic_axes)
这对我来说没有任何提示。然后我像这样提供了一些虚拟数据(假设一个小批量为 4,序列长度为 5 和 3 个类)
x = np.arange(20.0, dtype=np.float32).reshape(4,5,1)
y = np.array([1,0,0,0,1,0,0,0,1,0,0,1], dtype=np.float32).reshape(4,1,3)
loss.eval({input: x, label:y })
它按预期工作。
关于python - CNTK 提示 LSTM 中的动态轴,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/41198525/
我无法准确理解 LSTM 单元的范围——它如何映射到网络层。来自格雷夫斯 (2014): 在我看来,在单层网络中,layer = lstm 单元。这实际上如何在多层 rnn 中工作? 三层RNN LS
这是代码 model = Sequential() model.add(LSTM(256, input_shape=(None, 1), return_sequences=True)) model.a
为什么我们需要在pytorch中初始化LSTM中的隐藏状态h0。由于 h0 无论如何都会被计算并被覆盖?是不是很像 整合一个一 = 0 一个= 4 即使我们不做a=0,也应该没问题.. 最佳答案 重点
我正在尝试使用 LSTM 在 Deeplearning4j 中进行一些简单的时间序列预测,但我很难让它工作。 我有一个简单的文本文件,其中包含如下所示的数字列表,并希望网络学习预测下一个数字。 有没有
在大量阅读和绘制图表之后,我想我已经提出了一个模型,我可以将其用作更多测试我需要调整哪些参数和功能的基础。但是,我对如何实现以下测试用例感到困惑(所有数字都比最终模型小几个数量级,但我想从小处着手):
我正在尝试实现“Livelinet:用于预测教育视频中的活力的多模式深度循环神经网络”中的结构。 为了简单说明,我将 10 秒音频剪辑分成 10 个 1 秒音频剪辑,并从该 1 秒音频剪辑中获取频谱图
我正在 Tensorflow 中制作 LSTM 神经网络。 输入张量大小为 92。 import tensorflow as tf from tensorflow.contrib import rnn
我正在尝试 keras IMDB 数据的示例,数据形状是这样的: x_train shape: (25000, 80) 我只是把keras例子的原始代码改成了这样的代码: model = Sequen
我需要了解如何使用 torch.nn 的不同组件正确准备批量训练的输入。模块。具体来说,我希望为 seq2seq 模型创建一个编码器-解码器网络。 假设我有一个包含这三层的模块,按顺序: nn.Emb
我很难概念化 Keras 中有状态 LSTM 和无状态 LSTM 之间的区别。我的理解是,在每个批处理结束时,在无状态情况下“网络状态被重置”,而对于有状态情况,网络状态会为每个批处理保留,然后必须在
nn.Embedding() 是学习 LSTM 所必需的吗? 我在 PyTorch 中使用 LSTM 来预测 NER - 此处是类似任务的示例 - https://pytorch.org/tutori
我正在尝试找出适合我想要拟合的模型的正确语法。这是一个时间序列预测问题,我想在将时间序列输入 LSTM 之前使用一些密集层来改进时间序列的表示。 这是我正在使用的虚拟系列: import pandas
我在理解堆叠式 LSTM 网络中各层的输入-输出流时遇到了一些困难。假设我已经创建了一个如下所示的堆叠式 LSTM 网络: # parameters time_steps = 10 features
LSTM 类中的默认非线性激活函数是 tanh。我希望在我的项目中使用 ReLU。浏览文档和其他资源,我无法找到一种简单的方法来做到这一点。我能找到的唯一方法是定义我自己的自定义 LSTMCell,但
在 PyTorch 中,有一个 LSTM 模块,除了输入序列、隐藏状态和单元状态之外,它还接受 num_layers 参数,该参数指定我们的 LSTM 有多少层。 然而,还有另一个模块 LSTMCel
没什么好说的作为介绍:我想在 TensorFlow 中将 LSTM 堆叠在另一个 LSTM 上,但一直被错误阻止,我不太明白,更不用说单独解决了。 代码如下: def RNN(_X, _istate,
有人可以解释一下吗?我知道双向 LSTM 具有前向和反向传递,但是与单向 LSTM 相比,它有什么优势? 它们各自更适合什么? 最佳答案 LSTM 的核心是使用隐藏状态保留已经通过它的输入信息。 单向
我想构建一个带有特殊词嵌入的 LSTM,但我对它的工作原理有一些疑问。 您可能知道,一些 LSTM 对字符进行操作,因此它是字符输入,字符输出。我想做同样的事情,通过对单词的抽象来学习使用嵌套的 LS
我编写了一个LSTM回归模型。它是最后一个LSTM层的BATCH_SIZE=1和RETURN_Sequence=True的模型。我还设置了VERIFICATION_DATA和耐心进行培训。但似乎存在一
给定一个训练有素的 LSTM 模型,我想对单个时间步执行推理,即以下示例中的 seq_length = 1。在每个时间步之后,需要为下一个“批处理”记住内部 LSTM(内存和隐藏)状态。在推理的最开始
我是一名优秀的程序员,十分优秀!