- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试打印 pandas DataFrame。其中一列太宽(它是一个很长的字符串)。要打印,我正在使用 tabulate
库。但是当它被打印时,它会在很长的一行中显示所有列的全部内容。这是我看到的:
row name review rating
0 Planetwise Flannel Wipes These flannel wipes are OK, but in my opinion not worth keeping. I also ordered someImse Vimse Cloth Wipes-Ocean Blue-12 countwhich are larger, had a nicer, softer texture and just seemed higher quality. I use cloth wipes for hands and faces and have been usingThirsties 6 Pack Fab Wipes, Boyfor about 8 months now and need to replace them because they are starting to get rough and have had stink issues for a while that stripping no longer handles. 3
1 Planetwise Wipe Pouch it came early and was not disappointed. i love planet wise bags and now my wipe holder. it keps my osocozy wipes moist and does not leak. highly recommend it. 5
2 Annas Dream Full Quilt with 2 Shams Very soft and comfortable and warmer than it looks...fit the full size bed perfectly...would recommend to anyone looking for this type of quilt 5
3 Stop Pacifier Sucking without tears with Thumbuddy To Love\'s Binky Fairy Puppet and Adorable Book This is a product well worth the purchase. I have not found anything else like this, and it is a positive, ingenious approach to losing the binky. What I love most about this product is how much ownership my daughter has in getting rid of the binky. She is so proud of herself, and loves her little fairy. I love the artwork, the chart in the back, and the clever approach of this tool. 5
4 Stop Pacifier Sucking without tears with Thumbuddy To Love\'s Binky Fairy Puppet and Adorable Book All of my kids have cried non-stop when I tried to ween them off their paci
如您所见,该行太长了。如何限制打印字符串中的字符数?例如,我希望第 3 行打印成这样:
3 Stop Pacifier Sucking without tears ... This is a product well worth ... 5
我希望将此限制应用于表格中的所有行。
最佳答案
有 max_colwidth
和(终端)width
:
In [11]: pd.options.display.width = 50
In [12]: pd.options.display.max_colwidth = 50
In [13]: df
Out[13]:
0 \
0 0 Planetwise Flannel Wipes
1 1 Planetwise Wipe Pouch
2 2 Annas Dream Full Quilt with 2 Shams
3 3 Stop Pacifier Sucking without tears with Th...
4 4 Stop Pacifier Sucking without tears with Th...
...
参见 options docs .
关于Python:限制pandas DataFrame打印列的宽度,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32901585/
pandas.crosstab 和 Pandas 数据透视表似乎都提供了完全相同的功能。有什么不同吗? 最佳答案 pivot_table没有 normalize争论,不幸的是。 在 crosstab
我能找到的最接近的答案似乎太复杂:How I can create an interval column in pandas? 如果我有一个如下所示的 pandas 数据框: +-------+ |
这是我用来将某一行的一列值移动到同一行的另一列的当前代码: #Move 2014/15 column ValB to column ValA df.loc[(df.Survey_year == 201
我有一个以下格式的 Pandas 数据框: df = pd.DataFrame({'a' : [0,1,2,3,4,5,6], 'b' : [-0.5, 0.0, 1.0, 1.2, 1.4,
所以我有这两个数据框,我想得到一个新的数据框,它由两个数据框的行的克罗内克积组成。正确的做法是什么? 举个例子:数据框1 c1 c2 0 10 100 1 11 110 2 12
TL;DR:在 pandas 中,如何绘制条形图以使其 x 轴刻度标签看起来像折线图? 我制作了一个间隔均匀的时间序列(每天一个项目),并且可以像这样很好地绘制它: intensity[350:450
我有以下两个时间列,“Time1”和“Time2”。我必须计算 Pandas 中的“差异”列,即 (Time2-Time1): Time1 Time2
从这个 df 去的正确方法是什么: >>> df=pd.DataFrame({'a':['jeff','bob','jill'], 'b':['bob','jeff','mike']}) >>> df
我想按周从 Pandas 框架中的列中累积计算唯一值。例如,假设我有这样的数据: df = pd.DataFrame({'user_id':[1,1,1,2,2,2],'week':[1,1,2,1,
数据透视表的表示形式看起来不像我在寻找的东西,更具体地说,结果行的顺序。 我不知道如何以正确的方式进行更改。 df示例: test_df = pd.DataFrame({'name':['name_1
我有一个数据框,如下所示。 Category Actual Predicted 1 1 1 1 0
我有一个 df,如下所示。 df: ID open_date limit 1 2020-06-03 100 1 2020-06-23 500
我有一个 df ,其中包含与唯一值关联的各种字符串。对于这些唯一值,我想删除不等于单独列表的行,最后一行除外。 下面使用 Label 中的各种字符串值与 Item 相关联.所以对于每个唯一的 Item
考虑以下具有相同名称的列的数据框(显然,这确实发生了,目前我有一个像这样的数据集!:() >>> df = pd.DataFrame({"a":range(10,15),"b":range(5,10)
我在 Pandas 中有一个 DF,它看起来像: Letters Numbers A 1 A 3 A 2 A 1 B 1 B 2
如何减去两列之间的时间并将其转换为分钟 Date Time Ordered Time Delivered 0 1/11/19 9:25:00 am 10:58:00 am
我试图理解 pandas 中的下/上百分位数计算,但有点困惑。这是它的示例代码和输出。 test = pd.Series([7, 15, 36, 39, 40, 41]) test.describe(
我有一个多索引数据框,如下所示: TQ bought HT Detailed Instru
我需要从包含值“低”,“中”或“高”的数据框列创建直方图。当我尝试执行通常的df.column.hist()时,出现以下错误。 ex3.Severity.value_counts() Out[85]:
我试图根据另一列的长度对一列进行子串,但结果集是 NaN .我究竟做错了什么? import pandas as pd df = pd.DataFrame([['abcdefghi','xyz'],
我是一名优秀的程序员,十分优秀!