gpt4 book ai didi

python - 如何将带有 keras 回归器的 scikit-learn 管道保存到磁盘?

转载 作者:太空狗 更新时间:2023-10-29 18:27:31 25 4
gpt4 key购买 nike

我有一个带有 kerasRegressor 的 scikit-learn 管道:

estimators = [
('standardize', StandardScaler()),
('mlp', KerasRegressor(build_fn=baseline_model, nb_epoch=5, batch_size=1000, verbose=1))
]
pipeline = Pipeline(estimators)

训练管道后,我尝试使用 joblib 保存到磁盘...

joblib.dump(pipeline, filename , compress=9)

但是我得到一个错误:

RuntimeError: maximum recursion depth exceeded

如何将管道保存到磁盘?

最佳答案

我遇到了同样的问题,因为没有直接的方法可以做到这一点。这是一个对我有用的黑客。我将管道保存到两个文件中。第一个文件存储了 sklearn 管道的 pickled 对象,第二个文件用于存储 Keras 模型:

...
from keras.models import load_model
from sklearn.externals import joblib

...

pipeline = Pipeline([
('scaler', StandardScaler()),
('estimator', KerasRegressor(build_model))
])

pipeline.fit(X_train, y_train)

# Save the Keras model first:
pipeline.named_steps['estimator'].model.save('keras_model.h5')

# This hack allows us to save the sklearn pipeline:
pipeline.named_steps['estimator'].model = None

# Finally, save the pipeline:
joblib.dump(pipeline, 'sklearn_pipeline.pkl')

del pipeline

下面是如何加载模型:

# Load the pipeline first:
pipeline = joblib.load('sklearn_pipeline.pkl')

# Then, load the Keras model:
pipeline.named_steps['estimator'].model = load_model('keras_model.h5')

y_pred = pipeline.predict(X_test)

关于python - 如何将带有 keras 回归器的 scikit-learn 管道保存到磁盘?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37984304/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com