- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个多处理工作,我正在排队只读 numpy 数组,作为生产者消费者管道的一部分。
目前它们正在被腌制,因为这是 multiprocessing.Queue
的默认行为。这会降低性能。
是否有任何 pythonic 方法来传递对共享内存的引用而不是酸洗数组?
不幸的是,数组是在消费者启动后生成的,没有简单的方法可以解决这个问题。 (所以全局变量方法会很丑......)。
[请注意,在以下代码中,我们不期望 h(x0) 和 h(x1) 并行计算。相反,我们看到 h(x0) 和 g(h(x1)) 并行计算(就像 CPU 中的流水线)。]
from multiprocessing import Process, Queue
import numpy as np
class __EndToken(object):
pass
def parrallel_pipeline(buffer_size=50):
def parrallel_pipeline_with_args(f):
def consumer(xs, q):
for x in xs:
q.put(x)
q.put(__EndToken())
def parallel_generator(f_xs):
q = Queue(buffer_size)
consumer_process = Process(target=consumer,args=(f_xs,q,))
consumer_process.start()
while True:
x = q.get()
if isinstance(x, __EndToken):
break
yield x
def f_wrapper(xs):
return parallel_generator(f(xs))
return f_wrapper
return parrallel_pipeline_with_args
@parrallel_pipeline(3)
def f(xs):
for x in xs:
yield x + 1.0
@parrallel_pipeline(3)
def g(xs):
for x in xs:
yield x * 3
@parrallel_pipeline(3)
def h(xs):
for x in xs:
yield x * x
def xs():
for i in range(1000):
yield np.random.uniform(0,1,(500,2000))
if __name__ == "__main__":
rs = f(g(h(xs())))
for r in rs:
print r
最佳答案
在线程或进程之间共享内存
使用线程代替多处理
由于您使用的是 numpy,因此您可以利用 the global interpreter lock is released during numpy computations 的优势。 .这意味着您可以使用标准线程和共享内存进行并行处理,而不是多处理和进程间通信。这是您的代码的一个版本,经过调整以使用 threading.Thread 和 Queue.Queue 而不是 multiprocessing.Process 和 multiprocessing.Queue。这通过队列传递一个 numpy ndarray 而不对其进行酸洗。在我的计算机上,它的运行速度比您的代码快 3 倍。 (但是,它只比你的代码的串行版本快 20%。我已经建议了一些其他的方法。)
from threading import Thread
from Queue import Queue
import numpy as np
class __EndToken(object):
pass
def parallel_pipeline(buffer_size=50):
def parallel_pipeline_with_args(f):
def consumer(xs, q):
for x in xs:
q.put(x)
q.put(__EndToken())
def parallel_generator(f_xs):
q = Queue(buffer_size)
consumer_process = Thread(target=consumer,args=(f_xs,q,))
consumer_process.start()
while True:
x = q.get()
if isinstance(x, __EndToken):
break
yield x
def f_wrapper(xs):
return parallel_generator(f(xs))
return f_wrapper
return parallel_pipeline_with_args
@parallel_pipeline(3)
def f(xs):
for x in xs:
yield x + 1.0
@parallel_pipeline(3)
def g(xs):
for x in xs:
yield x * 3
@parallel_pipeline(3)
def h(xs):
for x in xs:
yield x * x
def xs():
for i in range(1000):
yield np.random.uniform(0,1,(500,2000))
rs = f(g(h(xs())))
%time print sum(r.sum() for r in rs) # 12.2s
from multiprocessing import Process, Queue, Array
import numpy as np
class ArrayQueue(object):
def __init__(self, template, maxsize=0):
if type(template) is not np.ndarray:
raise ValueError('ArrayQueue(template, maxsize) must use a numpy.ndarray as the template.')
if maxsize == 0:
# this queue cannot be infinite, because it will be backed by real objects
raise ValueError('ArrayQueue(template, maxsize) must use a finite value for maxsize.')
# find the size and data type for the arrays
# note: every ndarray put on the queue must be this size
self.dtype = template.dtype
self.shape = template.shape
self.byte_count = len(template.data)
# make a pool of numpy arrays, each backed by shared memory,
# and create a queue to keep track of which ones are free
self.array_pool = [None] * maxsize
self.free_arrays = Queue(maxsize)
for i in range(maxsize):
buf = Array('c', self.byte_count, lock=False)
self.array_pool[i] = np.frombuffer(buf, dtype=self.dtype).reshape(self.shape)
self.free_arrays.put(i)
self.q = Queue(maxsize)
def put(self, item, *args, **kwargs):
if type(item) is np.ndarray:
if item.dtype == self.dtype and item.shape == self.shape and len(item.data)==self.byte_count:
# get the ID of an available shared-memory array
id = self.free_arrays.get()
# copy item to the shared-memory array
self.array_pool[id][:] = item
# put the array's id (not the whole array) onto the queue
new_item = id
else:
raise ValueError(
'ndarray does not match type or shape of template used to initialize ArrayQueue'
)
else:
# not an ndarray
# put the original item on the queue (as a tuple, so we know it's not an ID)
new_item = (item,)
self.q.put(new_item, *args, **kwargs)
def get(self, *args, **kwargs):
item = self.q.get(*args, **kwargs)
if type(item) is tuple:
# unpack the original item
return item[0]
else:
# item is the id of a shared-memory array
# copy the array
arr = self.array_pool[item].copy()
# put the shared-memory array back into the pool
self.free_arrays.put(item)
return arr
class __EndToken(object):
pass
def parallel_pipeline(buffer_size=50):
def parallel_pipeline_with_args(f):
def consumer(xs, q):
for x in xs:
q.put(x)
q.put(__EndToken())
def parallel_generator(f_xs):
q = ArrayQueue(template=np.zeros(0,1,(500,2000)), maxsize=buffer_size)
consumer_process = Process(target=consumer,args=(f_xs,q,))
consumer_process.start()
while True:
x = q.get()
if isinstance(x, __EndToken):
break
yield x
def f_wrapper(xs):
return parallel_generator(f(xs))
return f_wrapper
return parallel_pipeline_with_args
@parallel_pipeline(3)
def f(xs):
for x in xs:
yield x + 1.0
@parallel_pipeline(3)
def g(xs):
for x in xs:
yield x * 3
@parallel_pipeline(3)
def h(xs):
for x in xs:
yield x * x
def xs():
for i in range(1000):
yield np.random.uniform(0,1,(500,2000))
print "multiprocessing with shared-memory arrays:"
%time print sum(r.sum() for r in f(g(h(xs())))) # 13.5s
%time print sum(1 for x in xs())
时相同。 .
import multiprocessing
import threading, Queue
import numpy as np
def f(x):
return x + 1.0
def g(x):
return x * 3
def h(x):
return x * x
def final(i):
return f(g(h(x(i))))
def final_sum(i):
return f(g(h(x(i)))).sum()
def x(i):
# produce sample number i
return np.random.uniform(0, 1, (500, 2000))
def rs_serial(func, n):
for i in range(n):
yield func(i)
def rs_parallel_threaded(func, n):
todo = range(n)
q = Queue.Queue(2*n_workers)
def worker():
while True:
try:
# the global interpreter lock ensures only one thread does this at a time
i = todo.pop()
q.put(func(i))
except IndexError:
# none left to do
q.put(None)
break
threads = []
for j in range(n_workers):
t = threading.Thread(target=worker)
t.daemon=False
threads.append(t) # in case it's needed later
t.start()
while True:
x = q.get()
if x is None:
break
else:
yield x
def rs_parallel_mp(func, n):
pool = multiprocessing.Pool(n_workers)
return pool.imap_unordered(func, range(n))
n_workers = 4
n_samples = 1000
print "serial:" # 14.8s
%time print sum(r.sum() for r in rs_serial(final, n_samples))
print "threaded:" # 10.1s
%time print sum(r.sum() for r in rs_parallel_threaded(final, n_samples))
print "mp return arrays:" # 19.6s
%time print sum(r.sum() for r in rs_parallel_mp(final, n_samples))
print "mp return results:" # 8.4s
%time print sum(r_sum for r_sum in rs_parallel_mp(final_sum, n_samples))
import multiprocessing, itertools, math
import numpy as np
def f(xs):
for x in xs:
yield x + 1.0
def g(xs):
for x in xs:
yield x * 3
def h(xs):
for x in xs:
yield x * x
def xs():
for i in range(1000):
yield np.random.uniform(0,1,(500,2000))
def final():
return f(g(h(xs())))
def final_sum():
for x in f(g(h(xs()))):
yield x.sum()
def get_chunk(args):
"""Retrieve n values (n=args[1]) from a generator function (f=args[0]) and return them as a list.
This runs in a worker process and does all the computation."""
return list(itertools.islice(args[0](), args[1]))
def parallelize(gen_func, max_items, n_workers=4, chunk_size=50):
"""Pull up to max_items items from several copies of gen_func, in small groups in parallel processes.
chunk_size should be big enough to improve efficiency (one copy of gen_func will be run for each chunk)
but small enough to avoid exhausting memory (each worker will keep chunk_size items in memory)."""
pool = multiprocessing.Pool(n_workers)
# how many chunks will be needed to yield at least max_items items?
n_chunks = int(math.ceil(float(max_items)/float(chunk_size)))
# generate a suitable series of arguments for get_chunk()
args_list = itertools.repeat((gen_func, chunk_size), n_chunks)
# chunk_gen will yield a series of chunks (lists of results) from the generator function,
# totaling n_chunks * chunk_size items (which is >= max_items)
chunk_gen = pool.imap_unordered(get_chunk, args_list)
# parallel_gen flattens the chunks, and yields individual items
parallel_gen = itertools.chain.from_iterable(chunk_gen)
# limit the output to max_items items
return itertools.islice(parallel_gen, max_items)
# in this case, the parallel version is slower than a single process, probably
# due to overhead of gathering numpy arrays in imap_unordered (via pickle?)
print "serial, return arrays:" # 15.3s
%time print sum(r.sum() for r in final())
print "parallel, return arrays:" # 24.2s
%time print sum(r.sum() for r in parallelize(final, max_items=1000))
# in this case, the parallel version is more than twice as fast as the single-thread version
print "serial, return result:" # 15.1s
%time print sum(r for r in final_sum())
print "parallel, return result:" # 6.8s
%time print sum(r for r in parallelize(final_sum, max_items=1000))
关于python - 只读 numpy 数组的快速队列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/38666078/
作为脚本的输出,我有 numpy masked array和标准numpy array .如何在运行脚本时轻松检查数组是否为掩码(具有 data 、 mask 属性)? 最佳答案 您可以通过 isin
我的问题 假设我有 a = np.array([ np.array([1,2]), np.array([3,4]), np.array([5,6]), np.array([7,8]), np.arra
numpy 是否有用于矩阵模幂运算的内置实现? (正如 user2357112 所指出的,我实际上是在寻找元素明智的模块化减少) 对常规数字进行模幂运算的一种方法是使用平方求幂 (https://en
我已经在 Numpy 中实现了这个梯度下降: def gradientDescent(X, y, theta, alpha, iterations): m = len(y) for i
我有一个使用 Numpy 在 CentOS7 上运行的项目。 问题是安装此依赖项需要花费大量时间。 因此,我尝试 yum install pip install 之前的 numpy 库它。 所以我跑:
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
numpy.random.seed(7) 在不同的机器学习和数据分析教程中,我看到这个种子集有不同的数字。选择特定的种子编号真的有区别吗?或者任何数字都可以吗?选择种子数的目标是相同实验的可重复性。
我需要读取存储在内存映射文件中的巨大 numpy 数组的部分内容,处理数据并对数组的另一部分重复。整个 numpy 数组占用大约 50 GB,我的机器有 8 GB RAM。 我最初使用 numpy.m
处理我想要旋转的数据。请注意,我仅限于 numpy,无法使用 pandas。原始数据如下所示: data = [ [ 1, a, [, ] ], [ 1, b, [, ] ], [ 2,
似乎 numpy.empty() 可以做的任何事情都可以使用 numpy.ndarray() 轻松完成,例如: >>> np.empty(shape=(2, 2), dtype=np.dtype('d
我在大型 numpy 数组中有许多不同的形式,我想使用 numpy 和 scipy 计算它们之间的边到边欧氏距离。 注意:我进行了搜索,这与堆栈中之前的其他问题不同,因为我想获得数组中标记 block
我有一个大小为 (2x3) 的 numpy 对象数组。我们称之为M1。在M1中有6个numpy数组。M1 给定行中的数组形状相同,但与 M1 任何其他行中的数组形状不同。 也就是说, M1 = [ [
如何使用爱因斯坦表示法编写以下点积? import numpy as np LHS = np.ones((5,20,2)) RHS = np.ones((20,2)) np.sum([ np.
假设我有 np.array of a = [0, 1, 1, 0, 0, 1] 和 b = [1, 1, 0, 0, 0, 1] 我想要一个新矩阵 c 使得如果 a[i] = 0 和 b[i] = 0
我有一个形状为 (32,5) 的 numpy 数组 batch。批处理的每个元素都包含一个 numpy 数组 batch_elem = [s,_,_,_,_] 其中 s = [img,val1,val
尝试为基于文本的多标签分类问题训练单层神经网络。 model= Sequential() model.add(Dense(20, input_dim=400, kernel_initializer='
首先是一个简单的例子 import numpy as np a = np.ones((2,2)) b = 2*np.ones((2,2)) c = 3*np.ones((2,2)) d = 4*np.
我正在尝试平均二维 numpy 数组。所以,我使用了 numpy.mean 但结果是空数组。 import numpy as np ws1 = np.array(ws1) ws1_I8 = np.ar
import numpy as np x = np.array([[1,2 ,3], [9,8,7]]) y = np.array([[2,1 ,0], [1,0,2]]) x[y] 预期输出: ar
我有两个数组 A (4000,4000),其中只有对角线填充了数据,而 B (4000,5) 填充了数据。有没有比 numpy.dot(a,b) 函数更快的方法来乘(点)这些数组? 到目前为止,我发现
我是一名优秀的程序员,十分优秀!