- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个函数可以执行一些模拟和返回字符串格式的数组。
我想运行模拟(功能)不同的输入参数值,超过 10000 个可能的输入值,并将结果写入单个文件。
我正在使用多处理,特别是 pool.map 函数并行运行模拟。
全程模拟功能运行超过10000次需要很长时间,我很想跟踪整个操作过程。
我认为下面当前代码中的问题是,pool.map 运行函数 10000 次,在这些操作期间没有任何进程跟踪。一旦并行处理完成运行 10000 次模拟(可能是几小时到几天),然后我会继续跟踪 10000 次模拟结果何时被保存到文件中。所以这并不是真正跟踪 pool.map 操作的处理。
我的代码是否有允许进程跟踪的简单修复?
def simFunction(input):
# Does some simulation and outputs simResult
return str(simResult)
# Parallel processing
inputs = np.arange(0,10000,1)
if __name__ == "__main__":
numCores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes = numCores)
t = pool.map(simFunction, inputs)
with open('results.txt','w') as out:
print("Starting to simulate " + str(len(inputs)) + " input values...")
counter = 0
for i in t:
out.write(i + '\n')
counter = counter + 1
if counter%100==0:
print(str(counter) + " of " + str(len(inputs)) + " input values simulated")
print('Finished!!!!')
最佳答案
请注意,我使用的是 pathos.multiprocessing
而不是 multiprocessing
。 它只是 multiprocessing
的一个分支使您能够使用多个输入执行 map
函数,具有更好的序列化,并允许您在任何地方执行 map
调用(不仅仅是在 __main__
).您也可以使用 multiprocessing
来执行以下操作,但代码会略有不同。
如果您使用迭代的 map
函数,跟踪进度非常容易。
from pathos.multiprocessing import ProcessingPool as Pool
def simFunction(x,y):
import time
time.sleep(2)
return x**2 + y
x,y = range(100),range(-100,100,2)
res = Pool().imap(simFunction, x,y)
with open('results.txt', 'w') as out:
for i in x:
out.write("%s\n" % res.next())
if i%10 is 0:
print "%s of %s simulated" % (i, len(x))
0 of 100 simulated
10 of 100 simulated
20 of 100 simulated
30 of 100 simulated
40 of 100 simulated
50 of 100 simulated
60 of 100 simulated
70 of 100 simulated
80 of 100 simulated
90 of 100 simulated
或者,您可以使用异步 map
。在这里,我会做一些不同的事情,只是为了混合起来。
import time
res = Pool().amap(simFunction, x,y)
while not res.ready():
print "waiting..."
time.sleep(5)
waiting...
waiting...
waiting...
waiting...
res.get()
[-100, -97, -92, -85, -76, -65, -52, -37, -20, -1, 20, 43, 68, 95, 124, 155, 188, 223, 260, 299, 340, 383, 428, 475, 524, 575, 628, 683, 740, 799, 860, 923, 988, 1055, 1124, 1195, 1268, 1343, 1420, 1499, 1580, 1663, 1748, 1835, 1924, 2015, 2108, 2203, 2300, 2399, 2500, 2603, 2708, 2815, 2924, 3035, 3148, 3263, 3380, 3499, 3620, 3743, 3868, 3995, 4124, 4255, 4388, 4523, 4660, 4799, 4940, 5083, 5228, 5375, 5524, 5675, 5828, 5983, 6140, 6299, 6460, 6623, 6788, 6955, 7124, 7295, 7468, 7643, 7820, 7999, 8180, 8363, 8548, 8735, 8924, 9115, 9308, 9503, 9700, 9899]
无论是迭代还是异步 map
都可以让您编写任何您想要的代码来更好地进行流程跟踪。例如,将唯一的“id”传递给每个作业,然后观察哪个返回,或者让每个作业返回它的进程 id。有很多方法可以跟踪进度和流程……但以上内容应该可以让您入门。
你可以获得pathos
here .
关于Python multiprocessing——跟踪pool.map操作的过程,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28375508/
我正在尝试使用多处理和队列实现生产者-消费者场景;主进程是生产者,两个子进程使用队列中的数据。这在没有任何异常 发生的情况下有效,但问题是我希望能够在工作人员死亡时重新启动他们(kill -9 wor
我试图在一个管理进程下启动一个数据队列服务器(这样它以后可以变成一个服务),虽然数据队列服务器功能在主进程中工作正常,但它在一个进程中不起作用使用 multiprocessing.Process 创建
我的多处理需求非常简单:我从事机器学习工作,有时我需要评估多个数据集中的一个算法,或者一个数据集中的多个算法,等等。我只需要运行一个带有一些参数的函数并获取一个数字。 我不需要 RPC、共享数据,什么
创建进程池或简单地遍历一个进程以创建更多进程之间有任何区别(以任何方式)吗? 这有什么区别?: pool = multiprocessing.Pool(5) pool.apply_async(work
multiprocessing.BoundedSemaphore(3) 与 multiprocessing.Sempahore(3) 有何不同? 我希望 multiprocessing.Bounded
我尝试通过 multiprocessing 包中的 Queue 对 Pipe 的速度进行基准测试。我认为 Pipe 会更快,因为 Queue 在内部使用 Pipe。 奇怪的是,Pipe 在发送大型 n
我有这样一个简单的任务: def worker(queue): while True: try: _ = queue.get_nowait()
我正在尝试编写一个与 multiprocessing.Pool 同时应用函数的应用程序。我希望这个函数成为一个实例方法(所以我可以在不同的子类中以不同的方式定义它)。这似乎是不可能的;正如我在其他地方
在 python 2 中,multiprocessing.dummy.Pool 和 multiprocessing.pool.ThreadPool 之间有什么区别吗?源代码似乎暗示它们是相同的。 最佳
我正在开发一个用于财务目的的模型。我将整个 S&P500 组件放在一个文件夹中,存储了尽可能多的 .hdf 文件。每个 .hdf 文件都有自己的多索引(年-周-分)。 顺序代码示例(非并行化): im
到目前为止,我是这样做的: rets=set(pool.map_async(my_callback, args.hosts).get(60*4)) 如果超时,我会得到一个异常: File "/usr
参见下面的示例和执行结果: #!/usr/bin/env python3.4 from multiprocessing import Pool import time import os def in
我的任务是监听 UDP 数据报,对其进行解码(数据报具有二进制信息),将解码后的信息放入字典中,将字典转储为 json 字符串,然后将 json 字符串发送到远程服务器(ActiveMQ)。 解码和发
我在 macOS 上工作,最近被 Python 3.8 多处理中“fork”到“spawn”的变化所困扰(参见 doc )。下面显示了一个简化的工作示例,其中使用“fork”成功但使用“spawn”失
multiprocessing.Queue 的文档指出从项目入队到其腌制表示刷新到底层管道之间存在一点延迟。显然,您可以将一个项目直接放入管道中(它没有说明其他情况,并且暗示情况就是如此)。 为什么管
我运行了一些测试代码来检查在 Linux 中使用 Pool 和 Process 的性能。我正在使用 Python 2.7。 multiprocessing.Pool 的源代码似乎显示它正在使用 mul
我在 Windows Standard Embedded 7 上运行 python 3.4.3。我有一个继承 multiprocessing.Process 的类。 在类的 run 方法中,我为进程对
我知道multiprocessing.Process类似于 threading.Thread当我子类 multiprocessing.Process 时要创建一个进程,我发现我不必调用 __init_
我有教科书声明说在多处理器系统中不建议禁用中断,并且会花费太多时间。但我不明白这一点,谁能告诉我多处理器系统禁用中断的过程?谢谢 最佳答案 在 x86(和其他架构,AFAIK)上,启用/禁用中断是基于
我正在执行下面的代码并且它工作正常,但它不会产生不同的进程,而是有时所有都在同一个进程中运行,有时 2 个在一个进程中运行。我正在使用 4 cpu 机器。这段代码有什么问题? def f(values
我是一名优秀的程序员,十分优秀!