- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
摘自《编程珠玑》15.2节
可在此处查看 C 代码:http://www.cs.bell-labs.com/cm/cs/pearls/longdup.c
当我使用后缀数组在 Python 中实现它时:
example = open("iliad10.txt").read()
def comlen(p, q):
i = 0
for x in zip(p, q):
if x[0] == x[1]:
i += 1
else:
break
return i
suffix_list = []
example_len = len(example)
idx = list(range(example_len))
idx.sort(cmp = lambda a, b: cmp(example[a:], example[b:])) #VERY VERY SLOW
max_len = -1
for i in range(example_len - 1):
this_len = comlen(example[idx[i]:], example[idx[i+1]:])
print this_len
if this_len > max_len:
max_len = this_len
maxi = i
我发现 idx.sort
步骤非常慢。我认为它很慢,因为 Python 需要按值而不是指针传递子字符串(如上面的 C 代码)。
测试文件可以从here下载
C 代码仅需 0.3 秒即可完成。
time cat iliad10.txt |./longdup
On this the rest of the Achaeans with one voice were for
respecting the priest and taking the ransom that he offered; but
not so Agamemnon, who spoke fiercely to him and sent him roughly
away.
real 0m0.328s
user 0m0.291s
sys 0m0.006s
但是对于Python代码,它在我的电脑上永远不会结束(我等了10分钟就杀了它)
有没有人知道如何使代码高效? (例如,少于 10 秒)
最佳答案
我的解决方案基于后缀数组。它是通过前缀加倍 最长公共(public)前缀 构造的。最坏情况下的复杂度是 O(n (log n)^2)。文件“iliad.mb.txt”在我的笔记本电脑上需要 4 秒。 longest_common_substring
函数很短,可以很容易地修改,例如用于搜索 10 个最长的非重叠子串。此 Python 代码比 original C code 更快从问题中,如果重复的字符串超过 10000 个字符。
from itertools import groupby
from operator import itemgetter
def longest_common_substring(text):
"""Get the longest common substrings and their positions.
>>> longest_common_substring('banana')
{'ana': [1, 3]}
>>> text = "not so Agamemnon, who spoke fiercely to "
>>> sorted(longest_common_substring(text).items())
[(' s', [3, 21]), ('no', [0, 13]), ('o ', [5, 20, 38])]
This function can be easy modified for any criteria, e.g. for searching ten
longest non overlapping repeated substrings.
"""
sa, rsa, lcp = suffix_array(text)
maxlen = max(lcp)
result = {}
for i in range(1, len(text)):
if lcp[i] == maxlen:
j1, j2, h = sa[i - 1], sa[i], lcp[i]
assert text[j1:j1 + h] == text[j2:j2 + h]
substring = text[j1:j1 + h]
if not substring in result:
result[substring] = [j1]
result[substring].append(j2)
return dict((k, sorted(v)) for k, v in result.items())
def suffix_array(text, _step=16):
"""Analyze all common strings in the text.
Short substrings of the length _step a are first pre-sorted. The are the
results repeatedly merged so that the garanteed number of compared
characters bytes is doubled in every iteration until all substrings are
sorted exactly.
Arguments:
text: The text to be analyzed.
_step: Is only for optimization and testing. It is the optimal length
of substrings used for initial pre-sorting. The bigger value is
faster if there is enough memory. Memory requirements are
approximately (estimate for 32 bit Python 3.3):
len(text) * (29 + (_size + 20 if _size > 2 else 0)) + 1MB
Return value: (tuple)
(sa, rsa, lcp)
sa: Suffix array for i in range(1, size):
assert text[sa[i-1]:] < text[sa[i]:]
rsa: Reverse suffix array for i in range(size):
assert rsa[sa[i]] == i
lcp: Longest common prefix for i in range(1, size):
assert text[sa[i-1]:sa[i-1]+lcp[i]] == text[sa[i]:sa[i]+lcp[i]]
if sa[i-1] + lcp[i] < len(text):
assert text[sa[i-1] + lcp[i]] < text[sa[i] + lcp[i]]
>>> suffix_array(text='banana')
([5, 3, 1, 0, 4, 2], [3, 2, 5, 1, 4, 0], [0, 1, 3, 0, 0, 2])
Explanation: 'a' < 'ana' < 'anana' < 'banana' < 'na' < 'nana'
The Longest Common String is 'ana': lcp[2] == 3 == len('ana')
It is between tx[sa[1]:] == 'ana' < 'anana' == tx[sa[2]:]
"""
tx = text
size = len(tx)
step = min(max(_step, 1), len(tx))
sa = list(range(len(tx)))
sa.sort(key=lambda i: tx[i:i + step])
grpstart = size * [False] + [True] # a boolean map for iteration speedup.
# It helps to skip yet resolved values. The last value True is a sentinel.
rsa = size * [None]
stgrp, igrp = '', 0
for i, pos in enumerate(sa):
st = tx[pos:pos + step]
if st != stgrp:
grpstart[igrp] = (igrp < i - 1)
stgrp = st
igrp = i
rsa[pos] = igrp
sa[i] = pos
grpstart[igrp] = (igrp < size - 1 or size == 0)
while grpstart.index(True) < size:
# assert step <= size
nextgr = grpstart.index(True)
while nextgr < size:
igrp = nextgr
nextgr = grpstart.index(True, igrp + 1)
glist = []
for ig in range(igrp, nextgr):
pos = sa[ig]
if rsa[pos] != igrp:
break
newgr = rsa[pos + step] if pos + step < size else -1
glist.append((newgr, pos))
glist.sort()
for ig, g in groupby(glist, key=itemgetter(0)):
g = [x[1] for x in g]
sa[igrp:igrp + len(g)] = g
grpstart[igrp] = (len(g) > 1)
for pos in g:
rsa[pos] = igrp
igrp += len(g)
step *= 2
del grpstart
# create LCP array
lcp = size * [None]
h = 0
for i in range(size):
if rsa[i] > 0:
j = sa[rsa[i] - 1]
while i != size - h and j != size - h and tx[i + h] == tx[j + h]:
h += 1
lcp[rsa[i]] = h
if h > 0:
h -= 1
if size > 0:
lcp[0] = 0
return sa, rsa, lcp
与 more complicated O(n log n) 相比,我更喜欢这个解决方案因为 Python 有一个非常快的列表排序算法 (Timsort) . Python 的排序可能比那篇文章的方法中必要的线性时间操作更快,在非常特殊的随机字符串和小字母表(典型的 DNA 基因组分析)的假设下,它应该是 O(n)。我读了 Gog 2011我算法的最坏情况 O(n log n) 实际上比许多不能使用 CPU 内存缓存的 O(n) 算法更快。
另一个答案中的代码基于 grow_chains如果文本包含 8 kB 长的重复字符串,则比问题的原始示例慢 19 倍。长时间重复的文本在古典文学中并不典型,但它们很常见,例如在“独立”学校的家庭作业集中。该程序不应在其上卡住。
我写了an example and tests with the same code适用于 Python 2.7、3.3 - 3.6。
关于python - 为 Python 查找最长重复字符串的有效方法(来自 Programming Pearls),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13560037/
如何使用 SPListCollection.Add(String, String, String, String, Int32, String, SPListTemplate.QuickLaunchO
我刚刚开始使用 C++ 并且对 C# 有一些经验,所以我有一些一般的编程经验。然而,似乎我马上就被击落了。我试过在谷歌上寻找,以免浪费任何人的时间,但没有结果。 int main(int argc,
这个问题已经有答案了: In Java 8 how do I transform a Map to another Map using a lambda? (8 个回答) Convert a Map>
我正在使用 node + typescript 和集成的 swagger 进行 API 调用。我 Swagger 提出以下要求 http://localhost:3033/employees/sear
我是 C++ 容器模板的新手。我收集了一些记录。每条记录都有一个唯一的名称,以及一个字段/值对列表。将按名称访问记录。字段/值对的顺序很重要。因此我设计如下: typedef string
我需要这两种方法,但j2me没有,我找到了一个replaceall();但这是 replaceall(string,string,string); 第二个方法是SringBuffer但在j2me中它没
If string is an alias of String in the .net framework为什么会发生这种情况,我应该如何解释它: type JustAString = string
我有两个列表(或字符串):一个大,另一个小。 我想检查较大的(A)是否包含小的(B)。 我的期望如下: 案例 1. B 是 A 的子集 A = [1,2,3] B = [1,2] contains(A
我有一个似乎无法解决的小问题。 这里...我有一个像这样创建的输入... var input = $(''); 如果我这样做......一切都很好 $(this).append(input); 如果我
我有以下代码片段 string[] lines = objects.Split(new string[] { "\r\n", "\n" }, StringSplitOptions.No
这可能真的很简单,但我已经坚持了一段时间了。 我正在尝试输出一个字符串,然后输出一个带有两位小数的 double ,后跟另一个字符串,这是我的代码。 System.out.printf("成本:%.2
以下是 Cloud Firestore 列表查询中的示例之一 citiesRef.where("state", ">=", "CA").where("state", "= 字符串,我们在Stack O
我正在尝试检查一个字符串是否包含在另一个字符串中。后面的代码非常简单。我怎样才能在 jquery 中做到这一点? function deleteRow(locName, locID) { if
这个问题在这里已经有了答案: How to implement big int in C++ (14 个答案) 关闭 9 年前。 我有 2 个字符串,都只包含数字。这些数字大于 uint64_t 的
我有一个带有自定义转换器的 Dozer 映射: com.xyz.Customer com.xyz.CustomerDAO customerName
这个问题在这里已经有了答案: How do I compare strings in Java? (23 个回答) 关闭 6 年前。 我想了解字符串池的工作原理以及一个字符串等于另一个字符串的规则是
我已阅读 this问题和其他一些问题。但它们与我的问题有些无关 对于 UILabel 如果你不指定 ? 或 ! 你会得到这样的错误: @IBOutlet property has non-option
这两种方法中哪一种在理论上更快,为什么? (指向字符串的指针必须是常量。) destination[count] 和 *destination++ 之间的确切区别是什么? destination[co
This question already has answers here: Closed 11 years ago. Possible Duplicates: Is String.Format a
我有一个Stream一个文件的,现在我想将相同的单词组合成 Map这很重要,这个词在 Stream 中出现的频率. 我知道我必须使用 collect(Collectors.groupingBy(..)
我是一名优秀的程序员,十分优秀!