- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我在 R、python statmodels 和 sklearn 中做了一些逻辑回归实验。虽然 R 和 statmodels 给出的结果一致,但与 sklearn 返回的结果存在一些差异。我想了解为什么这些结果不同。我理解这可能不是木头下使用的相同优化算法。
具体来说,我使用标准的 Default
数据集(在 ISL book 中使用)。以下 Python 代码将数据读入数据框 Default
。
import pandas as pd
# data is available here
Default = pd.read_csv('https://d1pqsl2386xqi9.cloudfront.net/notebooks/Default.csv', index_col=0)
#
Default['default']=Default['default'].map({'No':0, 'Yes':1})
Default['student']=Default['student'].map({'No':0, 'Yes':1})
#
I=Default['default']==0
print("Number of 'default' values :", Default[~I]['balance'].count())
“默认”值的数量:333。
一共有10000个例子,只有333个正例
我使用以下内容
library("ISLR")
data(Default,package='ISLR')
#write.csv(Default,"default.csv")
glm.out=glm('default~balance+income+student', family=binomial, data=Default)
s=summary(glm.out)
print(s)
#
glm.probs=predict(glm.out,type="response")
glm.probs[1:5]
glm.pred=ifelse(glm.probs>0.5,"Yes","No")
#attach(Default)
t=table(glm.pred,Default$default)
print(t)
score=mean(glm.pred==Default$default)
print(paste("score",score))
结果如下
Call: glm(formula = "default~balance+income+student", family = binomial, data = Default)
Deviance Residuals: Min 1Q Median 3Q Max
-2.4691 -0.1418 -0.0557 -0.0203 3.7383Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.087e+01 4.923e-01 -22.080 < 2e-16
balance 5.737e-03 2.319e-04 24.738 < 2e-16
income 3.033e-06 8.203e-06 0.370 0.71152
studentYes -6.468e-01 2.363e-01 -2.738 0.00619(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2920.6 on 9999 degrees of freedom Residual
deviance: 1571.5 on 9996 degrees of freedom AIC: 1579.5
Number of Fisher Scoring iterations: 8
glm.pred No Yes
No 9627 228
Yes 40 1051 "score 0.9732"
我懒得剪切和粘贴使用 statmodels 获得的结果。可以说它们与 R 给出的极其相似。
对于 sklearn,我运行了以下代码。
~~
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix
features = Default[[ 'balance', 'income' ]]
target = Default['default']
#
for weight in (None, 'auto'):
print("*"*40+"\nweight:",weight)
classifier = LogisticRegression(C=10000, class_weight=weight, random_state=42)
#C=10000 ~ no regularization
classifier.fit(features, target,) #fit classifier on whole base
print("Intercept", classifier.intercept_)
print("Coefficients", classifier.coef_)
y_true=target
y_pred_cls=classifier.predict_proba(features)[:,1]>0.5
C=confusion_matrix(y_true,y_pred_cls)
score=(C[0,0]+C[1,1])/(C[0,0]+C[1,1]+C[0,1]+C[1,0])
precision=(C[1,1])/(C[1,1]+C[0 ,1])
recall=(C[1,1])/(C[1,1]+C[1,0])
print("\n Confusion matrix")
print(C)
print()
print('{s:{c}<{n}}{num:2.4}'.format(s='Score',n=15,c='', num=score))
print('{s:{c}<{n}}{num:2.4}'.format(s='Precision',n=15,c='', num=precision))
print('{s:{c}<{n}}{num:2.4}'.format(s='Recall',n=15,c='', num=recall))
结果如下。
> ****************************************
>weight: None
>
>Intercept [ -1.94164126e-06]
>
>Coefficients [[ 0.00040756 -0.00012588]]
>
> Confusion matrix
>
> [[9664 3]
> [ 333 0]]
>
> Score 0.9664
> Precision 0.0
> Recall 0.0
>
> ****************************************
>weight: auto
>
>Intercept [-8.15376429]
>
>Coefficients
>[[ 5.67564834e-03 1.95253338e-05]]
>
> Confusion matrix
>
> [[8356 1311]
> [ 34 299]]
>
> Score 0.8655
> Precision 0.1857
> Recall 0.8979
我观察到,对于 class_weight=None
,分数非常好,但没有正例被识别。准确率和召回率均为零。找到的系数非常很小,尤其是截距。修改 C 不会改变任何事情。对于 class_weight='auto'
情况似乎更好,但我的精度仍然很低(过多的正分类)。同样,更改 C 也无济于事。如果我手动修改截距,我可以恢复 R 给出的结果。所以我怀疑这两种情况下截距的估计存在差异。由于这对三阈值的规范有影响(类似于脉动的重采样),这可以解释性能的差异。
但是,我欢迎任何关于在两种解决方案之间进行选择的建议,并有助于理解这些差异的根源。谢谢。
最佳答案
虽然这篇文章很旧,但我想给你一个解决方案。在您的帖子中,您将苹果与橙子进行比较。在您的 R 代码中,您在“默认”上估算“余额、收入和学生”。在您的 Python 代码中,您仅在“默认”时估算“余额和收入”。当然,您无法获得相同的估计值。此外,差异不能归因于特征缩放,因为与 kmeans 相比,逻辑回归通常不需要它。
你设置高C是对的,这样就没有正则化了。如果您想获得与 R 中相同的输出,则必须将求解器更改为“newton-cg”。不同的求解器可以给出不同的结果,但它们仍然会产生相同的目标值。只要您的求解器收敛,一切都会好起来的。
下面是为您提供与 R 和 Statsmodels 中相同的估计值的代码:
import pandas as pd
from sklearn.linear_model import LogisticRegression
from patsy import dmatrices #
import numpy as np
# data is available here
Default = pd.read_csv('https://d1pqsl2386xqi9.cloudfront.net/notebooks/Default.csv', index_col=0)
#
Default['default']=Default['default'].map({'No':0, 'Yes':1})
Default['student']=Default['student'].map({'No':0, 'Yes':1})
# use dmatrices to get data frame for logistic regression
y, X = dmatrices('default ~ balance+income+C(student)',
Default,return_type="dataframe")
y = np.ravel(y)
# fit logistic regression
model = LogisticRegression(C = 1e6, fit_intercept=False, solver = "newton-cg", max_iter=10000000)
model = model.fit(X, y)
# examine the coefficients
pd.DataFrame(zip(X.columns, np.transpose(model.coef_)))
关于python - R、statmodels、sklearn 与逻辑回归分类任务的比较,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28747019/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!