- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试将本教程的专家部分应用于我自己的数据,但我一直遇到维度错误。这是导致错误的代码。
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
W_conv1 = weight_variable([1, 8, 1, 4])
b_conv1 = bias_variable([4])
x_image = tf.reshape(tf_in, [-1,2,8,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
然后当我尝试运行这个命令时:
W_conv2 = weight_variable([1, 4, 4, 8])
b_conv2 = bias_variable([8])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
我收到以下错误:
ValueError Traceback (most recent call last)
<ipython-input-41-7ab0d7765f8c> in <module>()
3
4 h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
----> 5 h_pool2 = max_pool_2x2(h_conv2)
ValueError: ('filter must not be larger than the input: ', 'Filter: [', Dimension(2), 'x', Dimension(2), '] ', 'Input: [', Dimension(1), 'x', Dimension(4), '] ')
只是为了了解一些背景信息,我正在处理的数据是一个 CSV 文件,其中每行包含 10 个特征和 1 个可以是 1 或 0 的空列。我想要得到的是一个概率在空列中,该列将等于 1。
最佳答案
您必须对输入进行整形,使其与训练张量和输出兼容。如果输入的长度为 1,则输出的长度应为 1(长度代替维度)。
当你处理-
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 1, 1, 1],
strides=[1, 1, 1, 1], padding='SAME')
请注意我是如何将步幅和 ksize 更改为 [1, 1, 1, 1]
的。这会将输出与一维输入相匹配,并防止出现错误。
当你定义你的权重变量时(见下面的代码)-
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
您必须使前两个数字符合您用来训练模型的特征张量,最后两个数字将是预测输出的维度(与输入的维度相同) .
W_conv1 = weight_variable([1, 10, 1, 1])
b_conv1 = bias_variable([1])
注意开头的 [1, 10,
表示特征张量将是 1x10 特征张量;最后两个数字 1, 1]
对应于输入和输出张量/预测变量的维度。
当您 reshape x_foo 张量(我称之为 x_ [x prime])时,无论出于何种原因,您都必须像这样定义它-
x_ = tf.reshape(x, [-1,1,10,1])
注意中间的 1 和 10 - ...1,10,...
。同样,这些数字对应于特征张量的维度。
对于每个偏差变量,您选择先前定义的变量的最终数字。例如,如果 W_conv1 = weight_variable([1, 10, 1, 1])
看起来像这样,您将得到最终数字并将其放入偏差变量中,以便它可以匹配输入的维度.这是这样做的 - b_conv1 = bias_variable([1])
。
如果您需要更多解释,请在下方评论。
关于python - 如何修复 TensorFlow 中的维度错误?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/34092850/
我想使用批处理从文件夹中读取图像。但是解码后,当我使用tf.train.batch时可能会出现一些问题。这是代码。 def get_batch(image, label, batch_size, ca
我正在使用 tf.unsorted_segment_sum TensorFlow 的方法,当我作为数据给出的张量只有一行时,它工作正常。例如: tf.unsorted_segment_sum(tf.c
我想创建一个正则表达式来检查有效维度JavaScript 中的长度 x 宽度 x 高度。 例如90.49 x 34.93 x 40.64 我打算使用的示例代码: var dimensionRegex
ViewPager 是否必须是 Activity 布局中唯一存在的对象?我正在尝试实现这样的东西: 我应该在什么地方有一个大的寻呼机在顶部滚动(我有)和一个较小的画廊在它下面滚动。这只向我显示寻
据我所知,(维度、维度属性和事实)差异的最佳示例如下所示: 维度 - 产品、帐户、客户 维度属性 - ProductName、ProductNumber、CustomerName、CustomerNu
我是 Numpy 的新手,正在尝试理解什么是维度的基本问题, 我尝试了以下命令并试图理解为什么最后两个数组的 ndim 相同? >>> a= array([1,2,3]) >>> a.ndim 1 >
我对 MDX 比较陌生,正在尝试完成我认为应该很容易的事情,但我还没有找到任何解决方案。 我有一个销售立方体,其中一个衡量标准是利润,它可以是负数也可以是正数。我想得到一个有效的正利润总和的度量,即只
在大多数情况下,维度内层次结构的每个级别代表不同的概念(即国家->地区->城市、年->月->日),这很简单,可以在多维数据集中使用。 我感兴趣的是可变深度层次结构,它往往由相同概念的实例组成,即计算机
我正在尝试创建一个方法来总结潜在的项目并从数组返回该总和。以下是一些预期的示例输入: arraySum(new int[10]); // 10 arraySum(new int[2][5]); //
我正在尝试初始化一个二维数组(我创建的类对象),但我仍然遇到相同的运行时错误: Exception in thread "main" java.lang.NullPoointerException
(我是一名学生,这是我第一次发帖,所以请放轻松。)我想创建一个将二维数组作为参数的函数,并且在该数组中,我想要一个变量,稍后我想在代码中对其进行修改。这是最接近我想要的例子的东西: int size;
我想我可能会问一个虚拟问题,但我对 Android 编程还是个新手,而且我无法(尽管我付出了所有努力)在 Google 上找到我的答案。 问题是,我正在尝试使用 2D 图形开发一个小游戏。我希望我的“
如何使用 Crossfilter 过滤一系列日期?当我知道该时间段之间存在事实记录时,以下内容不起作用。 Var myDimension = CrossFilterObj.dimension(func
我正在启动另一个应用程序并设置其主要 HWND 位置和大小。我正在使用 STARTUPINFO指定窗口尺寸的标志,但看起来只有在新进程使用 CW_USEDEFAULT 时才会遵循这些尺寸在其 Crea
我正在尝试使用 Keras 构建我的第一个神经网络。我的经验为零,我似乎无法弄清楚为什么我的维度不对。我无法从他们的文档中弄清楚这个错误在提示什么,甚至是什么层导致了它。 我的模型接受一个 32 字节
我有一个水平导航栏,我的 a 元素没有扩展到父 li 元素的宽度和高度。 如何修改我的 CSS,使 a 元素与外部/父级 li 元素一样宽和高?
如何只更改需要 Dimension 对象的组件的宽度或高度?目前我是这样做的: jbutton.setPreferredSize(new Dimension(button.getPreferredSi
哪些 OLAP 工具支持动态、动态地创建维度或层次结构? 例如,层次结构将成员定义为:“前 5 名”、“前 6-10 名”、“其他”... 计算成员是通常的答案,我正在寻找不同的东西。计算器的问题。成
我使用 1 个 div 元素为我的网站制作 .background 。它的高度将是 100%。为了实现这一点,我使用 jQuery 尺寸实用程序。 用这个脚本来获取高度 $('.background
MultiArray与使用 std::vector 创建多数组相比,在 boost 中有很多优势。但是,我对 BOOST 中的 MultiArray 感到不舒服的一件事是创建一个可以轻松更改其大小的多
我是一名优秀的程序员,十分优秀!