- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试从我一直在运行的模拟代码中拟合一些数据,以便找出幂律相关性。当我绘制线性拟合时,数据拟合得不是很好。
这是我用来拟合数据的 python 脚本:
#!/usr/bin/env python
from scipy import optimize
import numpy
xdata=[ 0.00010851, 0.00021701, 0.00043403, 0.00086806, 0.00173611, 0.00347222]
ydata=[ 29.56241016, 29.82245508, 25.33930469, 19.97075977, 12.61276074, 7.12695312]
fitfunc = lambda p, x: p[0] + p[1] * x ** (p[2])
errfunc = lambda p, x, y: (y - fitfunc(p, x))
out,success = optimize.leastsq(errfunc, [1,-1,-0.5],args=(xdata, ydata),maxfev=3000)
print "%g + %g*x^%g"%(out[0],out[1],out[2])
我得到的输出是: -71205.3 + 71174.5*x^-9.79038e-05
虽然在图中拟合看起来与您对最小二乘拟合的预期一样好,但输出的形式让我感到困扰。我希望常数会接近您期望的零值(大约 30)。我期望找到比 10^-5 更大的功率依赖性。
我已经尝试重新缩放我的数据并使用参数来 optimize.leastsq 但没有成功。我正在努力实现的目标是可能的还是我的数据不允许这样做?计算成本很高,因此获取更多数据点并非易事。
谢谢!
最佳答案
最好先取对数,然后使用leastsquare
来拟合这个线性方程,这会给你一个更好的拟合。 scipy cookbook 中有一个很好的例子,我在下面对其进行了调整以适合您的代码。
这样的最佳拟合是:amplitude = 0.8955,index = -0.40943265484
正如我们从图表(和您的数据)中看到的那样,如果它符合幂律,我们预计振幅值不会接近 30
。正如在幂律方程 f(x) == Amp * x ** index
中,具有负指数:f(1) == Amp
和 f(0) == 无穷大
。
from pylab import *
from scipy import *
from scipy import optimize
xdata=[ 0.00010851, 0.00021701, 0.00043403, 0.00086806, 0.00173611, 0.00347222]
ydata=[ 29.56241016, 29.82245508, 25.33930469, 19.97075977, 12.61276074, 7.12695312]
logx = log10(xdata)
logy = log10(ydata)
# define our (line) fitting function
fitfunc = lambda p, x: p[0] + p[1] * x
errfunc = lambda p, x, y: (y - fitfunc(p, x))
pinit = [1.0, -1.0]
out = optimize.leastsq(errfunc, pinit,
args=(logx, logy), full_output=1)
pfinal = out[0]
covar = out[1]
index = pfinal[1]
amp = 10.0**pfinal[0]
print 'amp:',amp, 'index', index
powerlaw = lambda x, amp, index: amp * (x**index)
##########
# Plotting data
##########
clf()
subplot(2, 1, 1)
plot(xdata, powerlaw(xdata, amp, index)) # Fit
plot(xdata, ydata)#, yerr=yerr, fmt='k.') # Data
text(0.0020, 30, 'Ampli = %5.2f' % amp)
text(0.0020, 25, 'Index = %5.2f' % index)
xlabel('X')
ylabel('Y')
subplot(2, 1, 2)
loglog(xdata, powerlaw(xdata, amp, index))
plot(xdata, ydata)#, yerr=yerr, fmt='k.') # Data
xlabel('X (log scale)')
ylabel('Y (log scale)')
savefig('power_law_fit.png')
show()
关于python - 试图从 scipy powerlaw fit 中获得合理的值(value),我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/10181151/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!