- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
import tensorflow as tf
import numpy as np
import os
from PIL import Image
cur_dir = os.getcwd()
def modify_image(image):
#resized = tf.image.resize_images(image, 180, 180, 3)
image.set_shape([32,32,3])
flipped_images = tf.image.flip_up_down(image)
return flipped_images
def read_image(filename_queue):
reader = tf.WholeFileReader()
key,value = reader.read(filename_queue)
image = tf.image.decode_jpeg(value)
return key,image
def inputs():
filenames = ['standard_1.jpg', 'standard_2.jpg' ]
filename_queue = tf.train.string_input_producer(filenames)
filename,read_input = read_image(filename_queue)
reshaped_image = modify_image(read_input)
reshaped_image = tf.cast(reshaped_image, tf.float32)
label=tf.constant([1])
return reshaped_image,label
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME')
x = tf.placeholder(tf.float32, shape=[None,32,32,3])
y_ = tf.placeholder(tf.float32, shape=[None, 1])
image,label=inputs()
image=tf.reshape(image,[-1,32,32,3])
label=tf.reshape(label,[-1,1])
image_batch=tf.train.batch([image],batch_size=2)
label_batch=tf.train.batch([label],batch_size=2)
W_conv1 = weight_variable([5, 5, 3, 32])
b_conv1 = bias_variable([32])
image_4d=x_image = tf.reshape(image, [-1,32,32,3])
h_conv1 = tf.nn.relu(conv2d(image_4d, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
W_fc1 = weight_variable([8 * 8 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 8*8*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 2])
b_fc2 = bias_variable([2])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy= -tf.reduce_sum(tf.cast(image_batch[1],tf.float32)*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(20000):
sess.run(train_step,feed_dict={x:image_batch[0:1],y_:label_batch[0:1]})
我正在尝试在我自己的尺寸为 [32x32x3] 的图像上运行 tensorflow 卷积模型。在训练期间,图像被正确读取并分配给占位符。问题出现在运行 train_step 操作期间。当我执行图表时,出现以下错误。
TensorShape([Dimension(2), Dimension(1), Dimension(32), Dimension(32), Dimension(3)]) must have rank 1
但是当我看到这个例子时 here ,图像仅采用 [batch_size,height,width,depth] 张量的形式。这个例子工作正常。我错过了什么吗?
最佳答案
我认为错误来自这一行:
cross_entropy= -tf.reduce_sum(tf.cast(image_batch[1],tf.float32)*tf.log(y_conv))
image_batch
是一个 5 维张量,形状为 [2, 1, 32, 32, 3]
,其中 2 是 batch_size
tf.train.batch()
的参数,前面的 image = tf.reshape(image, [-1, 32, 32, 3])
。 (N.B. 这种 reshape 是不必要的,因为
tf.train.batch()
已经添加了批处理维度,而您最终不得不撤消稍后构造 image_4d
时 reshape 的效果)。
在 TensorFlow 中,切片操作(即
image_batch[1]
)的灵 active 略低于 NumPy。切片中指定的维度数必须等于张量的等级:即您必须指定所有五个维度才能工作。您可以指定 image_batch[1, :, :, :, :]
以获得 image_batch
的 4-D 切片。
不过,我注意到您的程序中还有一些其他问题:
cross_entropy
计算看起来很奇怪。通常,这会使用预测标签并将其与已知的标签进行比较,而不是与图像数据进行比较。
训练步骤的提要似乎没有效果,因为占位符
x
和 y_
在您的程序中未使用。此外,您似乎正在提供 tf.Tensor
(实际上是 image_batch
的非法切片),因此当您执行该语句时会失败。如果您打算使用馈送,您应该馈送包含输入数据的 NumPy 数组。
如果您不使用喂食——即使用程序中显示的
tf.WholeFileReader
- 您需要调用 tf.train.start_queue_runners()
才能开始。否则你的程序将挂起,等待输入。
关于python - tensorflow 错误 "shape Tensorshape() must have rank 1",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/35673874/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!