- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试执行与本文档中的示例非常相似的 groupby 过滤器:pandas groupby filter
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
... 'foo', 'bar'],
... 'B' : [1, 2, 3, 4, 5, 6],
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
>>> grouped = df.groupby('A')
>>> grouped.filter(lambda x: x['B'].mean() > 3.)
A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0
我试图返回一个包含所有 3 列但只有 2 行的 DataFrame。在按 A 列分组后,这 2 行包含 B 列的最小值。我尝试了以下代码行:
grouped.filter(lambda x: x['B'] == x['B'].min())
但这不起作用,我得到了这个错误:TypeError:过滤器函数返回了一个 Series,但需要一个标量 bool
我尝试返回的 DataFrame 应该是这样的:
A B C
0 foo 1 2.0
1 bar 2 5.0
如果您能提供任何帮助,我将不胜感激。预先感谢您的帮助。
最佳答案
简短的回答:
grouped.apply(lambda x: x[x['B'] == x['B']].min())
...和较长的:
您的grouped
对象有 2 个组:
In[25]: for df in grouped:
...: print(df)
...:
('bar',
A B C
1 bar 2 5.0
3 bar 4 1.0
5 bar 6 9.0)
('foo',
A B C
0 foo 1 2.0
2 foo 3 8.0
4 foo 5 2.0)
GroupBy 对象的
filter()
方法用于将组作为实体进行过滤,而不是用于过滤它们的个人行。所以使用filter()
方法,你可能只会得到4个结果:
没有别的,不管 filter()
方法中使用的参数( bool 函数)如何。
所以你必须使用其他方法。一个合适的方法是非常灵活的 apply()
方法,它可以让你应用一个任意的函数
在您的情况下,该函数应该返回(对于您的 2 个组中的每一个)在 'B'
列中具有最小值的 1 行 DataFrame,因此我们将使用 bool 掩码
group['B'] == group['B'].min()
用于选择这样的一行(或者 - 可能 - 更多行):
In[26]: def select_min_b(group):
...: return group[group['B'] == group['B'].min()]
现在将此函数用作 GroupBy 对象 grouped
的 apply()
方法的参数,我们将获得
In[27]: grouped.apply(select_min_b)
Out[27]:
A B C
A
bar 1 bar 2 5.0
foo 0 foo 1 2.0
注意:
相同,但只有一个命令(使用 lambda
函数):
grouped.apply(lambda group: group[group['B'] == group['B']].min())
关于Python 3 Pandas .groupby.过滤器,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/54717473/
给定输入: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 将数字按奇数或偶数分组,然后按小于或大于 5 分组。 预期输出: [[1, 3, 5], [2, 4], [6, 8, 10
编辑: @coldspeed、@wen-ben、@ALollz 指出了我在字符串 np.nan 中犯的新手错误。答案很好,所以我不删除这个问题来保留那些答案。 原文: 我读过这个问题/答案 What'
我试图概括我提出的问题 here . mlb 数据框看起来像 Player Position Salary Year 0 Mike Wit
我认为我不需要共享整个数据框,但基本上,这是有问题的代码行(当然,已经导入了 pandas) divstack = df[df['Competitor']=='Emma Slabach'].group
我面临下一个问题:我有组(按 ID),对于所有这些组,我需要应用以下代码:如果组内位置之间的距离在 3 米以内,则需要将它们添加在一起,因此将创建一个新组(代码如何创建我在下面显示的组)。现在,我想要
我有以下数据: ,dateTime,magnitude,occurrence,dateTime_s 1,2017-11-20 08:00:09.052260,12861,1,2017-11-20 08
我按感兴趣的列对 df 进行分组: grouped = df.groupby('columnA') 现在我只想保留至少有 5 名成员的组: grouped.filter(lambda x: len(x
数据是一个时间序列,许多成员 ID 与许多类别相关联: data_df = pd.DataFrame({'Date': ['2018-09-14 00:00:22',
选择 u.UM_TOKEN_NO 、u.UM_FULLNAME、u.SECTOR、u.department_name、t.TS_PROJECT_CODE、sum(t.TS_TOTAL_HRS) 来自
我有这两个表: +---------------+-------------+---------------------+----------+---------+ | items_ordered |
我正在使用 groupby 和 sum 快速汇总两个数据集 一个包含: sequence shares 1 100 2 200 3 50 1 2
这个问题在这里已经有了答案: list around groupby results in empty groups (3 个答案) itertools groupby object not out
我有一组行,我想按标识符的值进行分组 - 存在于每一行中 - 然后对将作为结果的组进行进一步的隔离处理。 我的数据框是这样的: In [50]: df Out[50]: groupkey b
假设您要在全局范围内销售产品,并且希望在某个主要城市的某个地方设立销售办事处。您的决定将完全基于销售数字。 这将是您的(简化的)销售数据: df={ 'Product':'Chair', 'Count
我有一个将数据分组两次的查询: var query = (from a in Context.SetA() from b in Context.SetB().Where(x => x.aId == a
我有一个这种格式的数据框: value identifier 2007-01-01 0.087085 55 2007-01-01 0.703249
这个问题在这里已经有了答案: python groupby behaviour? (3 个答案) 关闭 4 年前。 我有一个这样的列表 [u'201003', u'200403', u'200803
在 Python 中,我可以使用 itertools.groupby 将具有相同键的连续元素分组。 : >>> items = [(1, 2), (1, 5), (1, 3), (2, 9), (3,
无法翻译以下 GroupBy 查询并将引发错误:不支持客户端 GroupBy IEnumerable ids = new List { 1, 2, 3 }; var q = db.Comments.W
考虑一个 Spark DataFrame,其中只有很少的列。目标是对其执行 groupBy 操作,而不将其转换为 Pandas DataFrame。等效的 Pandas groupBy 代码如下所示:
我是一名优秀的程序员,十分优秀!