- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我通常从 numpy 的 einsum 函数中获得良好的性能(我喜欢它的语法)。 @Ophion 对 this question 的回答表明 - 对于测试的案例 - einsum 始终优于“内置”功能(有时略胜一筹,有时胜过很多)。但是我刚刚遇到了einsum慢很多的情况。考虑以下等效函数:
(M, K) = (1000000, 20)
C = np.random.rand(K, K)
X = np.random.rand(M, K)
def func_dot(C, X):
Y = X.dot(C)
return np.sum(Y * X, axis=1)
def func_einsum(C, X):
return np.einsum('ik,km,im->i', X, C, X)
def func_einsum2(C, X):
# Like func_einsum but break it into two steps.
A = np.einsum('ik,km', X, C)
return np.einsum('ik,ik->i', A, X)
我希望 func_einsum
运行最快,但我遇到的不是这样。在具有超线程、numpy 版本 1.9.0.dev-7ae0206 和使用 OpenBLAS 的多线程的四核 cpu 上运行,我得到以下结果:
In [2]: %time y1 = func_dot(C, X)
CPU times: user 320 ms, sys: 312 ms, total: 632 ms
Wall time: 209 ms
In [3]: %time y2 = func_einsum(C, X)
CPU times: user 844 ms, sys: 0 ns, total: 844 ms
Wall time: 842 ms
In [4]: %time y3 = func_einsum2(C, X)
CPU times: user 292 ms, sys: 44 ms, total: 336 ms
Wall time: 334 ms
当我将 K
增加到 200 时,差异更加极端:
In [2]: %time y1= func_dot(C, X)
CPU times: user 4.5 s, sys: 1.02 s, total: 5.52 s
Wall time: 2.3 s
In [3]: %time y2= func_einsum(C, X)
CPU times: user 1min 16s, sys: 44 ms, total: 1min 16s
Wall time: 1min 16s
In [4]: %time y3 = func_einsum2(C, X)
CPU times: user 15.3 s, sys: 312 ms, total: 15.6 s
Wall time: 15.6 s
有人可以解释为什么 einsum 在这里慢得多吗?
如果重要,这是我的 numpy 配置:
In [6]: np.show_config()
lapack_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
language = f77
atlas_threads_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_WITHOUT_LAPACK', None)]
language = c
include_dirs = ['/usr/local/include']
blas_opt_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = c
include_dirs = ['/usr/local/include']
atlas_blas_threads_info:
libraries = ['openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_INFO', '"\\"None\\""')]
language = c
include_dirs = ['/usr/local/include']
lapack_opt_info:
libraries = ['openblas', 'openblas']
library_dirs = ['/usr/local/lib']
define_macros = [('ATLAS_WITHOUT_LAPACK', None)]
language = f77
include_dirs = ['/usr/local/include']
lapack_mkl_info:
NOT AVAILABLE
blas_mkl_info:
NOT AVAILABLE
mkl_info:
NOT AVAILABLE
最佳答案
您可以两全其美:
def func_dot_einsum(C, X):
Y = X.dot(C)
return np.einsum('ij,ij->i', Y, X)
在我的系统上:
In [7]: %timeit func_dot(C, X)
10 loops, best of 3: 31.1 ms per loop
In [8]: %timeit func_einsum(C, X)
10 loops, best of 3: 105 ms per loop
In [9]: %timeit func_einsum2(C, X)
10 loops, best of 3: 43.5 ms per loop
In [10]: %timeit func_dot_einsum(C, X)
10 loops, best of 3: 21 ms per loop
如果可用,np.dot
使用 BLAS、MKL 或您拥有的任何库。所以对 np.dot
的调用几乎可以肯定是多线程的。 np.einsum
有自己的循环,所以不使用任何这些优化,除了它自己使用 SIMD 来加快普通 C 实现的速度。
然后是运行速度慢得多的多输入einsum调用... einsum的numpy源非常复杂,我没有完全理解它。所以请注意,以下充其量只是推测性的,但这是我认为正在发生的事情......
当您运行类似np.einsum('ij,ij->i', a, b)
的程序时,执行np.sum(a*b, axis= 1)
避免必须用所有产品实例化中间数组,并在其上循环两次。所以在底层发生的事情是这样的:
for i in range(I):
out[i] = 0
for j in range(J):
out[i] += a[i, j] * b[i, j]
现在说你正在寻找类似的东西:
np.einsum('ij,jk,ik->i', a, b, c)
你可以做同样的操作
np.sum(a[:, :, None] * b[None, :, :] * c[:, None, :], axis=(1, 2))
我认为 einsum 所做的是运行最后一段代码,而不必实例化巨大的中间数组,这肯定会使事情变得更快:
In [29]: a, b, c = np.random.rand(3, 100, 100)
In [30]: %timeit np.einsum('ij,jk,ik->i', a, b, c)
100 loops, best of 3: 2.41 ms per loop
In [31]: %timeit np.sum(a[:, :, None] * b[None, :, :] * c[:, None, :], axis=(1, 2))
100 loops, best of 3: 12.3 ms per loop
但如果仔细观察,摆脱中间存储可能是一件可怕的事情。这就是我认为 einsum 在底层所做的事情:
for i in range(I):
out[i] = 0
for j in range(J):
for k in range(K):
out[i] += a[i, j] * b[j, k] * c[i, k]
但是您正在重复大量操作!如果你这样做了:
for i in range(I):
out[i] = 0
for j in range(J):
temp = 0
for k in range(K):
temp += b[j, k] * c[i, k]
out[i] += a[i, j] * temp
你会做 I * J * (K-1)
更少的乘法(和 I * J
额外的加法),并节省大量时间。我的猜测是 einsum 不够聪明,无法在此级别上优化事物。在source code有迹象表明它只优化了 1 或 2 个操作数的操作,而不是 3 个。在任何情况下,为一般输入自动执行此操作似乎并不简单......
关于python - 为什么 numpy 的 einsum 比 numpy 的内置函数慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/20149201/
C语言sscanf()函数:从字符串中读取指定格式的数据 头文件: ?
最近,我有一个关于工作预评估的问题,即使查询了每个功能的工作原理,我也不知道如何解决。这是一个伪代码。 下面是一个名为foo()的函数,该函数将被传递一个值并返回一个值。如果将以下值传递给foo函数,
CStr 函数 返回表达式,该表达式已被转换为 String 子类型的 Variant。 CStr(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CSng 函数 返回表达式,该表达式已被转换为 Single 子类型的 Variant。 CSng(expression) expression 参数是任意有效的表达式。 说明 通常,可
CreateObject 函数 创建并返回对 Automation 对象的引用。 CreateObject(servername.typename [, location]) 参数 serv
Cos 函数 返回某个角的余弦值。 Cos(number) number 参数可以是任何将某个角表示为弧度的有效数值表达式。 说明 Cos 函数取某个角并返回直角三角形两边的比值。此比值是
CLng 函数 返回表达式,此表达式已被转换为 Long 子类型的 Variant。 CLng(expression) expression 参数是任意有效的表达式。 说明 通常,您可以使
CInt 函数 返回表达式,此表达式已被转换为 Integer 子类型的 Variant。 CInt(expression) expression 参数是任意有效的表达式。 说明 通常,可
Chr 函数 返回与指定的 ANSI 字符代码相对应的字符。 Chr(charcode) charcode 参数是可以标识字符的数字。 说明 从 0 到 31 的数字表示标准的不可打印的
CDbl 函数 返回表达式,此表达式已被转换为 Double 子类型的 Variant。 CDbl(expression) expression 参数是任意有效的表达式。 说明 通常,您可
CDate 函数 返回表达式,此表达式已被转换为 Date 子类型的 Variant。 CDate(date) date 参数是任意有效的日期表达式。 说明 IsDate 函数用于判断 d
CCur 函数 返回表达式,此表达式已被转换为 Currency 子类型的 Variant。 CCur(expression) expression 参数是任意有效的表达式。 说明 通常,
CByte 函数 返回表达式,此表达式已被转换为 Byte 子类型的 Variant。 CByte(expression) expression 参数是任意有效的表达式。 说明 通常,可以
CBool 函数 返回表达式,此表达式已转换为 Boolean 子类型的 Variant。 CBool(expression) expression 是任意有效的表达式。 说明 如果 ex
Atn 函数 返回数值的反正切值。 Atn(number) number 参数可以是任意有效的数值表达式。 说明 Atn 函数计算直角三角形两个边的比值 (number) 并返回对应角的弧
Asc 函数 返回与字符串的第一个字母对应的 ANSI 字符代码。 Asc(string) string 参数是任意有效的字符串表达式。如果 string 参数未包含字符,则将发生运行时错误。
Array 函数 返回包含数组的 Variant。 Array(arglist) arglist 参数是赋给包含在 Variant 中的数组元素的值的列表(用逗号分隔)。如果没有指定此参数,则
Abs 函数 返回数字的绝对值。 Abs(number) number 参数可以是任意有效的数值表达式。如果 number 包含 Null,则返回 Null;如果是未初始化变量,则返回 0。
FormatPercent 函数 返回表达式,此表达式已被格式化为尾随有 % 符号的百分比(乘以 100 )。 FormatPercent(expression[,NumDigitsAfterD
FormatNumber 函数 返回表达式,此表达式已被格式化为数值。 FormatNumber( expression [,NumDigitsAfterDecimal [,Inc
我是一名优秀的程序员,十分优秀!