gpt4 book ai didi

python - NLTK:语料库级 bleu 与句子级 BLEU 分数

转载 作者:太空狗 更新时间:2023-10-29 17:56:09 45 4
gpt4 key购买 nike

我已经在 python 中导入了 nltk 来计算 Ubuntu 上的 BLEU 分数。我了解句子级 BLEU 分数的工作原理,但我不了解语料库级 BLEU 分数的工作原理。

下面是我的语料库级 BLEU 分数代码:

import nltk

hypothesis = ['This', 'is', 'cat']
reference = ['This', 'is', 'a', 'cat']
BLEUscore = nltk.translate.bleu_score.corpus_bleu([reference], [hypothesis], weights = [1])
print(BLEUscore)

出于某种原因,上述代码的 bleu 分数为 0。我期望语料库级别的 BLEU 分数至少为 0.5。

这是我的句子级 BLEU 分数代码

import nltk

hypothesis = ['This', 'is', 'cat']
reference = ['This', 'is', 'a', 'cat']
BLEUscore = nltk.translate.bleu_score.sentence_bleu([reference], hypothesis, weights = [1])
print(BLEUscore)

这里的句子级 BLEU 分数是 0.71,这是我的预期,考虑到简洁惩罚和缺失的单词“a”。但是,我不明白语料库级别的 BLEU 分数是如何工作的。

如有任何帮助,我们将不胜感激。

最佳答案

长话短说:

>>> import nltk
>>> hypothesis = ['This', 'is', 'cat']
>>> reference = ['This', 'is', 'a', 'cat']
>>> references = [reference] # list of references for 1 sentence.
>>> list_of_references = [references] # list of references for all sentences in corpus.
>>> list_of_hypotheses = [hypothesis] # list of hypotheses that corresponds to list of references.
>>> nltk.translate.bleu_score.corpus_bleu(list_of_references, list_of_hypotheses)
0.6025286104785453
>>> nltk.translate.bleu_score.sentence_bleu(references, hypothesis)
0.6025286104785453

(注意:您必须在 develop 分支上拉取最新版本的 NLTK 才能获得稳定版本的 BLEU 分数实现)


长期:

实际上,如果整个语料库中只有一个引用和一个假设,corpus_bleu()sentence_bleu() 应该返回相同的值,如示例所示以上。

在代码中,我们看到 sentence_bleu is actually a duck-type of corpus_bleu :

def sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
return corpus_bleu([references], [hypothesis], weights, smoothing_function)

如果我们查看 sentence_bleu 的参数:

 def sentence_bleu(references, hypothesis, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
""""
:param references: reference sentences
:type references: list(list(str))
:param hypothesis: a hypothesis sentence
:type hypothesis: list(str)
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:return: The sentence-level BLEU score.
:rtype: float
"""

sentence_bleu 的引用的输入是一个 list(list(str))

所以如果你有一个句子字符串,例如“This is a cat”,您必须对其进行标记化以获取字符串列表,["This", "is", "a", "cat"]并且由于它允许多个引用,因此它必须是字符串列表的列表,例如如果你有第二个引用,“This is a feline”,你对 sentence_bleu() 的输入将是:

references = [ ["This", "is", "a", "cat"], ["This", "is", "a", "feline"] ]
hypothesis = ["This", "is", "cat"]
sentence_bleu(references, hypothesis)

说到corpus_bleu() list_of_references参数,基本上就是a list of whatever the sentence_bleu() takes as references :

def corpus_bleu(list_of_references, hypotheses, weights=(0.25, 0.25, 0.25, 0.25),
smoothing_function=None):
"""
:param references: a corpus of lists of reference sentences, w.r.t. hypotheses
:type references: list(list(list(str)))
:param hypotheses: a list of hypothesis sentences
:type hypotheses: list(list(str))
:param weights: weights for unigrams, bigrams, trigrams and so on
:type weights: list(float)
:return: The corpus-level BLEU score.
:rtype: float
"""

除了查看 nltk/translate/bleu_score.py 中的 doctest 之外, 你也可以看看 nltk/test/unit/translate/test_bleu_score.py 的单元测试查看如何使用 bleu_score.py 中的每个组件。

顺便说一下,由于 sentence_bleu 在 (nltk.translate.__init__.py]( https://github.com/nltk/nltk/blob/develop/nltk/translate/init.py#L21 中被导入为 bleu ), 使用

from nltk.translate import bleu 

将等同于:

from nltk.translate.bleu_score import sentence_bleu

在代码中:

>>> from nltk.translate import bleu
>>> from nltk.translate.bleu_score import sentence_bleu
>>> from nltk.translate.bleu_score import corpus_bleu
>>> bleu == sentence_bleu
True
>>> bleu == corpus_bleu
False

关于python - NLTK:语料库级 bleu 与句子级 BLEU 分数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40542523/

45 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com