gpt4 book ai didi

python - 对数对数图线性回归

转载 作者:太空狗 更新时间:2023-10-29 17:53:13 34 4
gpt4 key购买 nike

fig = plt.figure();
ax=plt.gca()
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none')
ax.set_yscale('log')
ax.set_xscale('log')

(Pdb) print x,y
[29, 36, 8, 32, 11, 60, 16, 242, 36, 115, 5, 102, 3, 16, 71, 0, 0, 21, 347, 19, 12, 162, 11, 224, 20, 1, 14, 6, 3, 346, 73, 51, 42, 37, 251, 21, 100, 11, 53, 118, 82, 113, 21, 0, 42, 42, 105, 9, 96, 93, 39, 66, 66, 33, 354, 16, 602]
[310000, 150000, 70000, 30000, 50000, 150000, 2000, 12000, 2500, 10000, 12000, 500, 3000, 25000, 400, 2000, 15000, 30000, 150000, 4500, 1500, 10000, 60000, 50000, 15000, 30000, 3500, 4730, 3000, 30000, 70000, 15000, 80000, 85000, 2200]

如何在此图上绘制线性回归?它当然应该使用日志值。

x=np.array(x)
y=np.array(y)
fig = plt.figure()
ax=plt.gca()
fit = np.polyfit(x, y, deg=1)
ax.plot(x, fit[0] *x + fit[1], color='red') # add reg line
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none')
ax.set_yscale('symlog')
ax.set_xscale('symlog')
pdb.set_trace()

结果:

由于存在多条直线/曲线和空白,因此不正确。 enter image description here

数据:

(Pdb) x
array([ 29., 36., 8., 32., 11., 60., 16., 242., 36.,
115., 5., 102., 3., 16., 71., 0., 0., 21.,
347., 19., 12., 162., 11., 224., 20., 1., 14.,
6., 3., 346., 73., 51., 42., 37., 251., 21.,
100., 11., 53., 118., 82., 113., 21., 0., 42.,
42., 105., 9., 96., 93., 39., 66., 66., 33.,
354., 16., 602.])
(Pdb) y
array([ 30, 47, 115, 50, 40, 200, 120, 168, 39, 100, 2, 100, 14,
50, 200, 63, 15, 510, 755, 135, 13, 47, 36, 425, 50, 4,
41, 34, 30, 289, 392, 200, 37, 15, 200, 50, 200, 247, 150,
180, 147, 500, 48, 73, 50, 55, 108, 28, 55, 100, 500, 61,
145, 400, 500, 40, 250])
(Pdb)

最佳答案

The only mathematical form that is a straight line on a log-log-plot is an exponential function.

因为你有 x=0 的数据,你不能只用一行来满足 log(y) = k*log(x) + a 因为 log(0)未定义。所以我们必须使用指数拟合函数;不是多项式。为此,我们将使用 scipy.optimize它是 curve_fit功能。我们将做一个指数函数和另一个稍微复杂一点的函数来说明如何使用这个函数:

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

# Abhishek Bhatia's data & scatter plot.
x = np.array([ 29., 36., 8., 32., 11., 60., 16., 242., 36.,
115., 5., 102., 3., 16., 71., 0., 0., 21.,
347., 19., 12., 162., 11., 224., 20., 1., 14.,
6., 3., 346., 73., 51., 42., 37., 251., 21.,
100., 11., 53., 118., 82., 113., 21., 0., 42.,
42., 105., 9., 96., 93., 39., 66., 66., 33.,
354., 16., 602.])
y = np.array([ 30, 47, 115, 50, 40, 200, 120, 168, 39, 100, 2, 100, 14,
50, 200, 63, 15, 510, 755, 135, 13, 47, 36, 425, 50, 4,
41, 34, 30, 289, 392, 200, 37, 15, 200, 50, 200, 247, 150,
180, 147, 500, 48, 73, 50, 55, 108, 28, 55, 100, 500, 61,
145, 400, 500, 40, 250])
fig = plt.figure()
ax=plt.gca()
ax.scatter(x,y,c="blue",alpha=0.95,edgecolors='none', label='data')
ax.set_yscale('log')
ax.set_xscale('log')


newX = np.logspace(0, 3, base=10) # Makes a nice domain for the fitted curves.
# Goes from 10^0 to 10^3
# This avoids the sorting and the swarm of lines.

# Let's fit an exponential function.
# This looks like a line on a lof-log plot.
def myExpFunc(x, a, b):
return a * np.power(x, b)
popt, pcov = curve_fit(myExpFunc, x, y)
plt.plot(newX, myExpFunc(newX, *popt), 'r-',
label="({0:.3f}*x**{1:.3f})".format(*popt))
print "Exponential Fit: y = (a*(x**b))"
print "\ta = popt[0] = {0}\n\tb = popt[1] = {1}".format(*popt)

# Let's fit a more complicated function.
# This won't look like a line.
def myComplexFunc(x, a, b, c):
return a * np.power(x, b) + c
popt, pcov = curve_fit(myComplexFunc, x, y)
plt.plot(newX, myComplexFunc(newX, *popt), 'g-',
label="({0:.3f}*x**{1:.3f}) + {2:.3f}".format(*popt))
print "Modified Exponential Fit: y = (a*(x**b)) + c"
print "\ta = popt[0] = {0}\n\tb = popt[1] = {1}\n\tc = popt[2] = {2}".format(*popt)

ax.grid(b='on')
plt.legend(loc='lower right')
plt.show()

这会产生下图: enter image description here

并将其写入终端:

kevin@proton:~$ python ./plot.py 
Exponential Fit: y = (a*(x**b))
a = popt[0] = 26.1736126404
b = popt[1] = 0.440755784363
Modified Exponential Fit: y = (a*(x**b)) + c
a = popt[0] = 17.1988418238
b = popt[1] = 0.501625165466
c = popt[2] = 22.6584645232

注意:使用 ax.set_xscale('log') 会隐藏图中 x=0 的点,但这些点确实有助于拟合。

关于python - 对数对数图线性回归,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32536226/

34 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com