- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个 5000*5000
numpy 数组,我想在其上计算大小为 25 的窗口的峰度。我尝试将 scipys 自己的峰度函数放在 generic_filter
中找到在 ndimage.filters
中像这样:
import numpy as np
from scipy.stats import kurtosis
from scipy.ndimage.filters import generic_filter
mat = np.random.random_sample((5000, 5000))
kurtosis_filter = generic_filter(mat, kurtosis, size=25, mode='reflect')
这永远不会结束,我完全不确定它是否给出了正确的答案。所以我的第一个问题是,这是否是将 generic_filter
与 scipy 函数一起使用的正确方法。如果它碰巧是正确的,那么它对我来说太慢了,没有任何用处。所以我的下一个问题是是否有更快的方法来实现这一目标?例如,考虑标准偏差,您可以简单地执行以下操作:
usual_mean = uniform_filter(mat, size=25, mode='reflect')
mean_of_squared = uniform_filter(np.multiply(mat,mat), size=25, mode='reflect')
standard_deviation = (mean_of_squared - np.multiply(usual_mean,usual_mean))**.5
这非常快,仅来自 $\sigma^2 = E[(X -\mu)^2] = E[X^2] - (E[X])^2$ 这一事实。
最佳答案
您的方法是正确的,但正如您所指出的,它对于手头的任务来说太慢了。考虑在数值最佳实现中您的任务有多大(不关心边界值):
def kurt(X, w):
n, m = X.shape
K = np.zeros_like(X)
for i in xrange(w, n-w): # 5000 iterations
for j in xrange(w, m-w): # 5000 iterations
x = X[i-w:i+w+1,j-w:j+w+1].flatten() # copy 25*25=625 values
x -= x.mean() # calculate and subtract mean
x /= np.sqrt((x**2).mean()) # normalize by stddev (625 mult.)
K[i,j] = (x**4).mean() - 3. # 2*625 = 1250 multiplications
return K
所以我们有 5000*5000*1875 ~ 470 亿
(!) 乘法。这甚至会太慢而无法在普通 C 实现中使用,更不用说将 Python 函数 kurtosis()
传递到 generic_filter()
的内部循环了。后者实际上是在调用 C 扩展函数,但好处可以忽略不计,因为它必须在每次迭代时回调到 Python,这是非常昂贵的。
所以,实际的问题是你需要一个更好的算法。既然scipy没有,这里就一步步开发吧。
允许加速此问题的关键观察结果是连续窗口的峰度计算基于大部分相同的值,除了一行(25 个值)被替换。因此,我们不是使用所有 625 个值从头开始重新计算峰度,而是尝试跟踪先前计算的总和并更新它们,以便只需要处理 25 个新值。
这需要扩展 (x - mu)**4
因子,因为只有 x
的运行总和,x**2
, x**3
和 x**4
可以轻松更新。没有像你提到的标准差公式那样很好的取消,但它是完全可行的:
def kurt2(X, w):
n, m = X.shape
K = np.zeros_like(X)
W = 2*w + 1
for j in xrange(m-W+1):
for i in xrange(n-W+1):
x = X[i:i+W,j:j+W].flatten()
x2 = x*x
x3 = x2*x
x4 = x2*x2
M1 = x.mean()
M2 = x2.mean()
M3 = x3.mean()
M4 = x4.mean()
M12 = M1*M1
V = M2 - M12;
K[w+i,w+j] = (M4 - 4*M1*M3 + 3*M12*(M12 + 2*V)) / (V*V) - 3
return K
注意: 以这种形式编写的算法在数值上不太稳定,因为我们让分子和分母变得非常大,而之前我们提前除以防止这种情况(即使在一个 sqrt 的成本)。但是,我发现对于峰度来说,这对于实际应用来说从来都不是问题。
在上面的代码中,我尽量减少乘法次数。 运行方式 M1
、M2
、M3
和 M4
现在可以更新,而不是很容易,通过减去不再是窗口一部分的行的贡献并添加新行的贡献。
让我们来实现这个:
def kurt3(X, w):
n, m = X.shape
K = np.zeros_like(X)
W = 2*w + 1
N = W*W
Xp = np.zeros((4, W, W), dtype=X.dtype)
xp = np.zeros((4, W), dtype=X.dtype)
for j in xrange(m-W+1):
# reinitialize every time we reach row 0
Xp[0] = x1 = X[:W,j:j+W]
Xp[1] = x2 = x1*x1
Xp[2] = x3 = x2*x1
Xp[3] = x4 = x2*x2
s = Xp.sum(axis=2) # make sure we sum along the fastest index
S = s.sum(axis=1) # the running sums
s = s.T.copy() # circular buffer of row sums
M = S / N
M12 = M[0]*M[0]
V = M[1] - M12;
# kurtosis at row 0
K[w,w+j] = (M[3] - 4*M[0]*M[2] + 3*M12*(M12 + 2*V)) / (V*V) - 3
for i in xrange(n-W):
xp[0] = x1 = X[i+W,j:j+W] # the next row
xp[1] = x2 = x1*x1
xp[2] = x3 = x2*x1
xp[3] = x4 = x2*x2
k = i % W # index in circular buffer
S -= s[k] # remove cached contribution of old row
s[k] = xp.sum(axis=1) # cache new row
S += s[k] # add contributions of new row
M = S / N
M12 = M[0]*M[0]
V = M[1] - M12;
# kurtosis at row != 0
K[w+1+i,w+j] = (M[3] - 4*M[0]*M[2] + 3*M12*(M12 + 2*V)) / (V*V) - 3
return K
既然我们有了一个好的算法,我们注意到计时结果仍然相当令人失望。我们现在的问题是 Python + numpy 是这种数字运算工作的错误语言。让我们写一个C扩展!这是 _kurtosismodule.c
:
#include <Python.h>
#include <numpy/arrayobject.h>
static inline void add_line(double *b, double *S, const double *x, size_t W) {
size_t l;
double x1, x2;
b[0] = b[1] = b[2] = b[3] = 0.;
for (l = 0; l < W; ++l) {
b[0] += x1 = x[l];
b[1] += x2 = x1*x1;
b[2] += x2*x1;
b[3] += x2*x2;
}
S[0] += b[0];
S[1] += b[1];
S[2] += b[2];
S[3] += b[3];
}
static PyObject* py_kurt(PyObject* self, PyObject* args) {
PyObject *objK, *objX, *objB;
int w;
PyArg_ParseTuple(args, "OOOi", &objK, &objX, &objB, &w);
double *K = PyArray_DATA(objK);
double *X = PyArray_DATA(objX);
double *B = PyArray_DATA(objB);
size_t n = PyArray_DIM(objX, 0);
size_t m = PyArray_DIM(objX, 1);
size_t W = 2*w + 1, N = W*W, i, j, k, I, J;
double *S = B + 4*W;
double *x, *b, M, M2, V;
for (j = 0, J = m*w + w; j < m-W+1; ++j, ++J) {
S[0] = S[1] = S[2] = S[3] = 0.;
for (k = 0, x = X + j, b = B; k < W; ++k, x += m, b += 4) {
add_line(b, S, x, W);
}
M = S[0] / N;
M2 = M*M;
V = S[1] / N - M2;
K[J] = ((S[3] - 4*M*S[2]) / N + 3*M2*(M2 + 2*V)) / (V*V) - 3;
for (i = 0, I = J + m; i < n-W; ++i, x += m, I += m) {
b = B + 4*(i % W); // row in circular buffer
S[0] -= b[0];
S[1] -= b[1];
S[2] -= b[2];
S[3] -= b[3];
add_line(b, S, x, W);
M = S[0] / N;
M2 = M*M;
V = S[1] / N - M2;
K[I] = ((S[3] - 4*M*S[2]) / N + 3*M2*(M2 + 2*V)) / (V*V) - 3;
}
}
Py_RETURN_NONE;
}
static PyMethodDef methods[] = {
{"kurt", py_kurt, METH_VARARGS, ""},
{0}
};
PyMODINIT_FUNC init_kurtosis(void) {
Py_InitModule("_kurtosis", methods);
import_array();
}
构建:
python setup.py build_ext --inplace
setup.py
是:
from distutils.core import setup, Extension
module = Extension('_kurtosis', sources=['_kurtosismodule.c'])
setup(ext_modules=[module])
请注意,我们没有在 C 扩展中分配任何内存。这样,我们就不必陷入引用计数/垃圾收集的任何困惑之中。我们只是在 Python 中使用一个入口点:
import _kurtosis
def kurt4(X, w):
# add type/size checking if you like
K = np.zeros(X.shape, np.double)
scratch = np.zeros(8*(w + 1), np.double)
_kurtosis.kurt(K, X, scratch, w)
return K
最后,让我们来计时:
In [1]: mat = np.random.random_sample((5000, 5000))
In [2]: %timeit K = kurt4(mat, 12) # 2*12 + 1 = 25
1 loops, best of 3: 5.25 s per loop
鉴于任务的规模,这是一个非常合理的表现!
关于python - 使用 scipys generic_filter 实现 "Kurtosis filter",我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24296216/
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!