gpt4 book ai didi

python - CPU (numpy) 和 GPU (gnumpy) 上的矩阵乘法给出不同的结果

转载 作者:太空狗 更新时间:2023-10-29 17:47:45 25 4
gpt4 key购买 nike

我正在使用 gnumpy通过在 GPU 上进行训练来加速神经网络训练中的某些计算。我得到了想要的加速,但我有点担心 numpy (cpu) 与 gnumpy (gpu) 结果的差异。

我有以下测试脚本来说明问题:

import gnumpy as gpu
import numpy as np

n = 400

a = np.random.uniform(low=0., high=1., size=(n, n)).astype(np.float32)
b = np.random.uniform(low=0., high=1., size=(n, n)).astype(np.float32)

ga = gpu.garray(a)
gb = gpu.garray(b)

ga = ga.dot(gb)
a = a.dot(b)

print ga.as_numpy_array(dtype=np.float32) - a

它提供输出:

[[  1.52587891e-05  -2.28881836e-05   2.28881836e-05 ...,  -1.52587891e-05
3.81469727e-05 1.52587891e-05]
[ -5.34057617e-05 -1.52587891e-05 0.00000000e+00 ..., 1.52587891e-05
0.00000000e+00 1.52587891e-05]
[ -1.52587891e-05 -2.28881836e-05 5.34057617e-05 ..., 2.28881836e-05
0.00000000e+00 -7.62939453e-06]
...,
[ 0.00000000e+00 1.52587891e-05 3.81469727e-05 ..., 3.05175781e-05
0.00000000e+00 -2.28881836e-05]
[ 7.62939453e-06 -7.62939453e-06 -2.28881836e-05 ..., 1.52587891e-05
7.62939453e-06 1.52587891e-05]
[ 1.52587891e-05 7.62939453e-06 2.28881836e-05 ..., -1.52587891e-05
7.62939453e-06 3.05175781e-05]]

如您所见,差异在 10^-5 左右。

所以问题是:我应该担心这些差异还是这是预期的行为?

附加信息:

  • GPU:GeForce GTX 770;
  • numpy 版本:1.6.1

当我使用梯度检查(使用有限差分近似)来验证我为从 numpy 切换到 gnumpy 所做的小修改没有破坏任何东西时,我注意到了这个问题。正如人们可能预料的那样,梯度检查不适用于 32 位精度(gnumpy 不支持 float64),但令我惊讶的是,当使用相同的精度时,CPU 和 GPU 之间的错误有所不同。

下面给出了小型测试神经网络在 CPU 和 GPU 上的错误: gradient checking errors

既然误差幅度相似,我想这些差异是可以的吗?

看完article ,在 BenC 的评论中引用,我很确定这些差异主要可以由其中一种设备使用融合乘加 (FMA) 指令而另一种不使用来解释。

我实现了论文中的示例:

import gnumpy as gpu
import numpy as np

a=np.array([1.907607,-.7862027, 1.147311, .9604002], dtype=np.float32)
b=np.array([-.9355000, -.6915108, 1.724470, -.7097529], dtype=np.float32)

ga = gpu.garray(a)
gb = gpu.garray(b)

ga = ga.dot(gb)
a = a.dot(b)

print "CPU", a
print "GPU", ga
print "DIFF", ga - a

>>>CPU 0.0559577
>>>GPU 0.0559577569366
>>>DIFF 8.19563865662e-08

...并且区别类似于 FMA 与串行算法(尽管由于某些原因,两个结果与确切结果的差异比论文中的更多)。

我使用的 GPU (GeForce GTX 770) 支持 FMA 指令,而 CPU 不支持(我有一个 Ivy Bridge Intel® Xeon(R) CPU E3-1225 V2,但英特尔在其产品中引入了 FMA3 指令哈斯韦尔)。

其他可能的解释包括后台使用的不同数学库或由 CPU 与 GPU 的不同并行化级别等导致的操作顺序差异。

最佳答案

我建议使用 np.allclose 来测试两个 float 组是否几乎相等。

尽管您只查看两个结果数组中值之间的绝对 差异,np.allclose 也会考虑它们的相对 差异.例如,假设输入数组中的值大 1000 倍 - 那么两个结果之间的绝对差异也将大 1000 倍,但这并不意味着两个点积的精度有所降低。

np.allclose 将返回 True 仅当您的两个测试数组中的每一对对应元素都满足以下条件时,ab:

abs(a - b) <= (atol + rtol * abs(b))

默认情况下,rtol=1e-5atol=1e-8。这些公差是一个很好的“经验法则”,但它们在您的情况下是否足够小将取决于您的特定应用。例如,如果您要处理 < 1e-8 的值,那么 1e-8 的绝对差异将是一场彻底的灾难!

如果您尝试使用默认公差对您的两个结果调用 np.allclose,您会发现 np.allclose 返回 True .那么我的猜测是,这些差异可能小到不值得担心。这实际上取决于您对结果的处理方式。

关于python - CPU (numpy) 和 GPU (gnumpy) 上的矩阵乘法给出不同的结果,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/21020356/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com