gpt4 book ai didi

python - 为什么 lil_matrix 和 dok_matrix 与普通的字典相比这么慢?

转载 作者:太空狗 更新时间:2023-10-29 17:45:54 24 4
gpt4 key购买 nike

我想迭代构建稀疏矩阵,并注意到根据 SciPy 文档有两个合适的选项:

LiL matrix :

class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)[source] Row-based linked list sparse matrix

This is an efficient structure for constructing sparse matrices incrementally.

DoK matrix :

class scipy.sparse.dok_matrix(arg1, shape=None, dtype=None, copy=False)[source] Dictionary Of Keys based sparse matrix.

This is an efficient structure for constructing sparse matrices incrementally.

但是当我运行基准测试与构建值字典(稍后可以轻松转换为稀疏矩阵)相比时,后者比使用任何稀疏矩阵快 10-20 倍型号:

from scipy.sparse import dok_matrix, lil_matrix
from timeit import timeit
from collections import defaultdict

def common_dict(rows, cols):
freqs = defaultdict(lambda: defaultdict(int))
for row, col in zip(rows, cols):
freqs[row][col] += 1

return freqs

def dok(rows, cols):
freqs = dok_matrix((1000,1000))
for row, col in zip(rows, cols):
freqs[row,col] += 1

return freqs

def lil(rows, cols):
freqs = lil_matrix((1000,1000))
for row, col in zip(rows, cols):
freqs[row,col] += 1

return freqs


def benchmark():
cols = range(1000)
rows = range(1000)

res = timeit("common_dict({},{})".format(rows, cols),
"from __main__ import common_dict",
number=100)

print("common_dict: {}".format(res))

res = timeit("dok({},{})".format(rows, cols),
"from __main__ import dok",
number=100)

print("dok: {}".format(res))

res = timeit("lil({},{})".format(rows, cols),
"from __main__ import lil",
number=100)

print("lil: {}".format(res))

结果:

benchmark()

common_dict: 0.11778324202168733
dok: 2.2927695910912007
lil: 1.3541790939634666

是什么导致矩阵模型产生如此大的开销,有什么方法可以加快它的速度吗?是否存在 dok 或 lil 比普通字典更喜欢字典的用例?

最佳答案

当我将 2 个稀疏数组的 += 更改为 = 时:

for row, col in zip(rows, cols):
#freqs[row,col] += 1
freqs[row,col] = 1

他们各自的时间减半。最耗时的是索引。对于 +=,它必须执行 __getitem____setitem__

当文档说 doklil 更适合迭代构造时,他们的意思是扩展它们的底层数据结构比其他格式更容易。

当我尝试用您的代码制作一个csr 矩阵时,我得到:

/usr/lib/python2.7/dist-packages/scipy/sparse/compressed.py:690: SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient. SparseEfficiencyWarning)

并且速度慢了 30 倍。

因此,速度声明与 csr 等格式相关,与纯 Python 或 numpy 结构无关。

您可能想查看 dok_matrix.__get_item__dok_matrix.__set_item__ 的 Python 代码,看看当您执行 freq[r,c] 时会发生什么


构建dok 的更快方法是:

freqs = dok_matrix((1000,1000))
d = dict()
for row, col in zip(rows, cols):
d[(row, col)] = 1
freqs.update(d)

利用 dok 是子类字典这一事实。请注意,dok 矩阵不是字典的字典。它的键是像 (50,50) 这样的元组。

构造相同稀疏数组的另一种快速方法是:

freqs = sparse.coo_matrix((np.ones(1000,int),(rows,cols)))

换句话说,由于您已经有了rowscols 数组(或范围),计算相应的data 数组,然后构造稀疏数组。

但如果您必须在增量增长步骤之间对矩阵执行稀疏操作,那么 doklil 可能是您的最佳选择。


稀疏矩阵是为线性代数问题开发的,例如求解具有大型稀疏矩阵的线性方程。多年前,我在 MATLAB 中使用它们来解决有限差分问题。对于这项工作,计算友好的 csr 格式是最终目标,而 coo 格式是一种方便的初始化格式。

现在很多 SO scipy 稀疏问题都来自 scikit-learn 和文本分析问题。它们还用于生物数据库文件。但是 (data),(row,col) 定义方法仍然效果最好。

因此,稀疏矩阵从来都不是用于快速增量创建的。字典和列表等传统 Python 结构在这方面要好得多。


这是一个更快的 dok 迭代,它利用了它的字典方法。 update 似乎和普通字典一样快。 get 大约比等效索引 (freq[row,col]) 快 3 倍。索引可能使用get,但一定有很多开销。

def fast_dok(rows, cols):
freqs = dok_matrix((1000,1000))
for row, col in zip(rows,cols):
i = freqs.get((row,col),0)
freqs.update({(row,col):i+1})
return freqs

跳过 get,直接执行

         freqs.update({(row,col): 1)

甚至更快 - 比 defaultdict 示例的 defaultdict 更快,几乎和简单的字典初始化一样快 ({(r, c):1 for r,c in zip(rows, cols)})

关于python - 为什么 lil_matrix 和 dok_matrix 与普通的字典相比这么慢?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/27770906/

24 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com