gpt4 book ai didi

python - 高效地与请求异步下载文件

转载 作者:太空狗 更新时间:2023-10-29 17:42:37 25 4
gpt4 key购买 nike

我想用 python 尽快下载文件。这是我的代码

import pandas as pd
import requests
from requests_futures.sessions import FuturesSession
import os
import pathlib
from timeit import default_timer as timer


class AsyncDownloader:
"""Download files asynchronously"""

__urls = set()
__dest_path = None
__user_agent = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:58.0) Gecko/20100101 Firefox/58.0'
__read_timeout = 60
__connection_timeout = 30
__download_count = 0 # unlimited
# http://www.browserscope.org/?category=network
__worker_count = 17 # No of threads to spawn
__chunk_size = 1024
__download_time = -1
__errors = []

# TODO Fetch only content of a specific type from a csv
# TODO Improve code structure so that it can be used as a commandline tool

def set_source_csv(self, source_path, column_name):
self.source_path = source_path
self.column_name = column_name

try:
my_csv = pd.read_csv(source_path, usecols=[self.column_name], chunksize=10)
except ValueError:
print("The column name doesn't exist")
return
else:
# No exception whatsoever
for chunk in my_csv:
AsyncDownloader.__urls.update(set(getattr(chunk, self.column_name)))

def set_destination_path(self, dest_path):
if dest_path.endswith('/'):
dest_path = dest_path[:-1]
self.dest_path = dest_path
# TODO Add exception in case we can't create the directory
pathlib.Path(self.dest_path).mkdir(parents=True, exist_ok=True)
if os.access(self.dest_path, os.W_OK):
AsyncDownloader.__dest_path = pathlib.Path(self.dest_path).resolve()

def set_user_agent(self, useragent):
self.useragent = useragent
AsyncDownloader.__user_agent = self.useragent

def set_connection_timeout(self, ctimeout_secs):
self.timeout_secs = ctimeout_secs
if self.timeout_secs >= 0:
AsyncDownloader.__connection_timeout = self.timeout_secs

def set_read_timeout(self, rtimeout_secs):
self.timeout_secs = rtimeout_secs
if self.timeout_secs >= 0:
AsyncDownloader.__read_timeout = self.timeout_secs

def set_download_count(self, file_count):
self.file_count = file_count
if self.file_count > 0:
AsyncDownloader.__download_count = self.file_count

def set_worker_count(self, worker_count):
self.worker_count = worker_count
if self.worker_count > 0:
AsyncDownloader.__worker_count = self.worker_count

def set_chunk_size(self, chunk_size):
self.chunk_size = chunk_size
if self.chunk_size > 0:
AsyncDownloader.__chunk_size = self.chunk_size

def print_urls(self):
print(AsyncDownloader.__urls)

def get_download_time(self):
return AsyncDownloader.__download_time

def get_errors(self):
return AsyncDownloader.__errors

def download(self):
start = timer()
try:
session = FuturesSession(max_workers=AsyncDownloader.__worker_count)
session.headers.update({'user-agent': AsyncDownloader.__user_agent})
session.request(AsyncDownloader.__connection_timeout,
AsyncDownloader.__connection_timeout, stream=True)

results = []
# Give an accurate file count even if we don't have to download it as it a;ready exist
file_count = 0

for url in AsyncDownloader.__urls:
filename = os.path.basename(url)
# check if we need only a limited number of files
if AsyncDownloader.__download_count != 0:
# No need to download file if it already exist
if pathlib.Path(AsyncDownloader.__dest_path / filename).is_file():
file_count += 1
continue
else:
if file_count < AsyncDownloader.__download_count:
file_count += 1
results.append(session.get(url))
else:
if not pathlib.Path(AsyncDownloader.__dest_path / filename).is_file():
results.append(session.get(url))

for result in results:
# wait for the response to complete, if it hasn't already
response = result.result()
filename = os.path.basename(response.url)
if response.status_code == 200:
with open(pathlib.Path(AsyncDownloader.__dest_path / filename).resolve(), 'wb') as fd:
for chunk in response.iter_content(chunk_size=AsyncDownloader.__chunk_size):
if chunk: # filter out keep-alive new chunks
fd.write(chunk)

end = timer()
AsyncDownloader.__download_time = end - start

except requests.exceptions.HTTPError as errh:
AsyncDownloader.__errors.append("Http Error:" + errh)
# print("Http Error:", errh)
except requests.exceptions.ConnectionError as errc:
AsyncDownloader.__errors.append("Error Connecting:" + errc)
# print("Error Connecting:", errc)
except requests.exceptions.Timeout as errt:
AsyncDownloader.__errors.append("Timeout Error:" + errt)
# print("Timeout Error:", errt)
except requests.exceptions.RequestException as err:
AsyncDownloader.__errors.append("OOps: Something Else" + err)
else:
return

下面的代码做了一个非常糟糕的假设。事实上,我假设第一个 url 将首先完成,这当然是不正确的。

# wait for the response to complete, if it hasn't already
response = result.result()

我如何确保只处理已完成的请求,而不是像上面那样以有效的方式进行假设?

对于如何提高性能的任何其他建议,我将不胜感激。

亲切的问候

最佳答案

即使连接按顺序完成,您仍然按顺序处理文件。第二个文件必须等待第一个文件写入,依此类推。所以,你能做的最好的事情就是并行处理所有事情(尽管有 GIL,这也可以完成,因为像写入磁盘和从网络读取这样的 io 操作会释放它)。基本上,使用常规 requests 库(不是 requests-futures)并为每个请求 + 文件处理创建一个 future /线程。

还有更多方法可以让它更快,比如在写入时继续下载 block (即两个线程,一个用于请求,一个用于文件处理)。并通过发出 multi-part 请求并行读取 block ,这是“下载加速器”领域,您可能不希望代码中出现这种复杂性。

编辑:此外,分 block 下载是惰性的,这意味着您只是并行发出初始请求,但实际的分 block 文件下载是按顺序进行的,因为它是在主线程中完成的。因此,您当前的方法并不比完全同步 好多少。上述建议仍然有效。

关于python - 高效地与请求异步下载文件,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/48628510/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com