- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试使用 SciPy wrapper for QHull 获取一组点的凸包体积 .
根据documentation of QHull , 我应该传递 "FA"
选项以获得总表面积和体积。
这是我得到的..我做错了什么?
> pts
[(494.0, 95.0, 0.0), (494.0, 95.0, 1.0) ... (494.0, 100.0, 4.0), (494.0, 100.0, 5.0)]
> hull = spatial.ConvexHull(pts, qhull_options="FA")
> dir(hull)
['__class__', '__del__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', '_qhull', '_update', 'add_points', 'close', 'coplanar', 'equations', 'max_bound', 'min_bound', 'ndim', 'neighbors', 'npoints', 'nsimplex', 'points', 'simplices']
> dir(hull._qhull)
['__class__', '__delattr__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
最佳答案
似乎没有任何明显的方法可以直接获得您想要的结果,无论您传入什么参数。如果不是 ConvexHull
,您自己计算应该不会太难>,您使用 Delaunay
(其中还提供了大部分与凸包相关的信息)。
def tetrahedron_volume(a, b, c, d):
return np.abs(np.einsum('ij,ij->i', a-d, np.cross(b-d, c-d))) / 6
from scipy.spatial import Delaunay
pts = np.random.rand(10, 3)
dt = Delaunay(pts)
tets = dt.points[dt.simplices]
vol = np.sum(tetrahedron_volume(tets[:, 0], tets[:, 1],
tets[:, 2], tets[:, 3]))
编辑 根据评论,以下是获取凸包体积的更快方法:
def convex_hull_volume(pts):
ch = ConvexHull(pts)
dt = Delaunay(pts[ch.vertices])
tets = dt.points[dt.simplices]
return np.sum(tetrahedron_volume(tets[:, 0], tets[:, 1],
tets[:, 2], tets[:, 3]))
def convex_hull_volume_bis(pts):
ch = ConvexHull(pts)
simplices = np.column_stack((np.repeat(ch.vertices[0], ch.nsimplex),
ch.simplices))
tets = ch.points[simplices]
return np.sum(tetrahedron_volume(tets[:, 0], tets[:, 1],
tets[:, 2], tets[:, 3]))
对于一些虚构的数据,第二种方法似乎快了大约 2 倍,而且数值精度似乎非常好(小数点后 15 位!!!),尽管必须有一些更病态的情况:
pts = np.random.rand(1000, 3)
In [26]: convex_hull_volume(pts)
Out[26]: 0.93522518081853867
In [27]: convex_hull_volume_bis(pts)
Out[27]: 0.93522518081853845
In [28]: %timeit convex_hull_volume(pts)
1000 loops, best of 3: 2.08 ms per loop
In [29]: %timeit convex_hull_volume_bis(pts)
1000 loops, best of 3: 1.08 ms per loop
关于python - 来自 SciPy 的带有 QHull 的凸包体积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/24733185/
我在使用 cx_freeze 和 scipy 时无法编译 exe。特别是,我的脚本使用 from scipy.interpolate import griddata 构建过程似乎成功完成,但是当我尝试
是否可以通过函数在 scipy 中定义一个稀疏矩阵,而不是列出所有可能的值?在文档中,我看到可以通过以下方式创建稀疏矩阵 There are seven available sparse matrix
SciPy为非线性最小二乘问题提供了两种功能: optimize.leastsq()仅使用Levenberg-Marquardt算法。 optimize.least_squares()允许我们选择Le
SciPy 中的求解器能否处理复数值(即 x=x'+i*x")?我对使用 Nelder-Mead 类型的最小化函数特别感兴趣。我通常是 Matlab 用户,我知道 Matlab 没有复杂的求解器。如果
我有看起来像这样的数据集: position number_of_tag_at_this_position 3 4 8 6 13 25 23 12 我想对这个数据集应用三次样条插值来插值标签密度;为此
所以,我正在处理维基百科转储,以计算大约 5,700,000 个页面的页面排名。这些文件经过预处理,因此不是 XML 格式。 它们取自 http://haselgrove.id.au/wikipedi
Scipy 和 Numpy 返回归一化的特征向量。我正在尝试将这些向量用于物理应用程序,我需要它们不被标准化。 例如a = np.matrix('-3, 2; -1, 0') W,V = spl.ei
基于此处提供的解释 1 ,我正在尝试使用相同的想法来加速以下积分: import scipy.integrate as si from scipy.optimize import root, fsol
这很容易重新创建。 如果我的脚本 foo.py 是: import scipy 然后运行: python pyinstaller.py --onefile foo.py 当我启动 foo.exe 时,
我想在我的代码中使用 scipy.spatial.distance.cosine。如果我执行类似 import scipy.spatial 或 from scipy import spatial 的操
Numpy 有一个基本的 pxd,声明它的 c 接口(interface)到 cython。是否有用于 scipy 组件(尤其是 scipy.integrate.quadpack)的 pxd? 或者,
有人可以帮我处理 scipy.stats.chisquare 吗?我没有统计/数学背景,我正在使用来自 https://en.wikipedia.org/wiki/Chi-squared_test 的
我正在使用 scipy.odr 拟合数据与权重,但我不知道如何获得拟合优度或 R 平方的度量。有没有人对如何使用函数存储的输出获得此度量有建议? 最佳答案 res_var Output 的属性是所谓的
我刚刚下载了新的 python 3.8,我正在尝试使用以下方法安装 scipy 包: pip3.8 install scipy 但是构建失败并出现以下错误: **Failed to build sci
我有 my own triangulation algorithm它基于 Delaunay 条件和梯度创建三角剖分,使三角形与梯度对齐。 这是一个示例输出: 以上描述与问题无关,但对于上下文是必要的。
这是一个非常基本的问题,但我似乎找不到好的答案。 scipy 到底计算什么内容 scipy.stats.norm(50,10).pdf(45) 据我了解,平均值为 50、标准差为 10 的高斯中像 4
我正在使用 curve_fit 来拟合一阶动态系统的阶跃响应,以估计增益和时间常数。我使用两种方法。第一种方法是在时域中拟合从函数生成的曲线。 # define the first order dyn
让我们假设 x ~ Poisson(2.5);我想计算类似 E(x | x > 2) 的东西。 我认为这可以通过 .dist.expect 运算符来完成,即: D = stats.poisson(2.
我正在通过 OpenMDAO 使用 SLSQP 来解决优化问题。优化工作充分;最后的 SLSQP 输出如下: Optimization terminated successfully. (Exi
log( VA ) = gamma - (1/eta)log[alpha L ^(-eta) + 测试版 K ^(-eta)] 我试图用非线性最小二乘法估计上述函数。我为此使用了 3 个不同的包(Sc
我是一名优秀的程序员,十分优秀!