- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试以这种方式使用 python 的多处理包:
featureClass = [[1000, k, 1] for k in drange(start, end, step)] #list of arguments
for f in featureClass:
pool.apply_async(worker, args=f, callback=collectMyResult)
pool.close()
pool.join
在池的进程中,我想避免等待那些需要超过 60 秒才能返回结果的进程。这可能吗?
最佳答案
这是一种无需更改 worker
函数即可执行此操作的方法。需要两个步骤:
multiprocessing.Pool
的 maxtasksperchild
选项来确保池中的工作进程在每次任务执行后重新启动。 worker
,然后等待该线程的结果 timeout
秒。使用守护线程很重要,因为进程在退出前不会等待守护线程完成。如果超时到期,您退出(或中止 - 这取决于您)包装函数,这将结束任务,并且因为您设置了 maxtasksperchild=1
,导致 Pool
终止工作进程并启动一个新进程。这意味着执行您实际工作的后台线程也会中止,因为它是守护线程,并且它所在的进程已关闭。
import multiprocessing
from multiprocessing.dummy import Pool as ThreadPool
from functools import partial
def worker(x, y, z):
pass # Do whatever here
def collectMyResult(result):
print("Got result {}".format(result))
def abortable_worker(func, *args, **kwargs):
timeout = kwargs.get('timeout', None)
p = ThreadPool(1)
res = p.apply_async(func, args=args)
try:
out = res.get(timeout) # Wait timeout seconds for func to complete.
return out
except multiprocessing.TimeoutError:
print("Aborting due to timeout")
raise
if __name__ == "__main__":
pool = multiprocessing.Pool(maxtasksperchild=1)
featureClass = [[1000,k,1] for k in range(start,end,step)] #list of arguments
for f in featureClass:
abortable_func = partial(abortable_worker, worker, timeout=3)
pool.apply_async(abortable_func, args=f,callback=collectMyResult)
pool.close()
pool.join()
任何超时的函数都会引发multiprocessing.TimeoutError
。请注意,这意味着您的回调不会在超时发生时执行。如果这是 Not Acceptable ,只需更改 abortable_worker
的 except
block 以返回某些内容,而不是调用 raise
。
另请记住,在每次任务执行后重新启动工作进程会对 Pool
的性能产生负面影响,因为会增加开销。您应该针对您的用例衡量这一点,看看是否值得权衡是否有能力中止工作。如果这是一个问题,您可能需要尝试另一种方法,比如在 worker
运行时间过长时合作中断它,而不是试图从外部杀死它。有很多关于 SO 的问题都涵盖了这个主题。
关于python - 超时后如何中止 multiprocessing.Pool 中的任务?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29494001/
我正在尝试使用多处理和队列实现生产者-消费者场景;主进程是生产者,两个子进程使用队列中的数据。这在没有任何异常 发生的情况下有效,但问题是我希望能够在工作人员死亡时重新启动他们(kill -9 wor
我试图在一个管理进程下启动一个数据队列服务器(这样它以后可以变成一个服务),虽然数据队列服务器功能在主进程中工作正常,但它在一个进程中不起作用使用 multiprocessing.Process 创建
我的多处理需求非常简单:我从事机器学习工作,有时我需要评估多个数据集中的一个算法,或者一个数据集中的多个算法,等等。我只需要运行一个带有一些参数的函数并获取一个数字。 我不需要 RPC、共享数据,什么
创建进程池或简单地遍历一个进程以创建更多进程之间有任何区别(以任何方式)吗? 这有什么区别?: pool = multiprocessing.Pool(5) pool.apply_async(work
multiprocessing.BoundedSemaphore(3) 与 multiprocessing.Sempahore(3) 有何不同? 我希望 multiprocessing.Bounded
我尝试通过 multiprocessing 包中的 Queue 对 Pipe 的速度进行基准测试。我认为 Pipe 会更快,因为 Queue 在内部使用 Pipe。 奇怪的是,Pipe 在发送大型 n
我有这样一个简单的任务: def worker(queue): while True: try: _ = queue.get_nowait()
我正在尝试编写一个与 multiprocessing.Pool 同时应用函数的应用程序。我希望这个函数成为一个实例方法(所以我可以在不同的子类中以不同的方式定义它)。这似乎是不可能的;正如我在其他地方
在 python 2 中,multiprocessing.dummy.Pool 和 multiprocessing.pool.ThreadPool 之间有什么区别吗?源代码似乎暗示它们是相同的。 最佳
我正在开发一个用于财务目的的模型。我将整个 S&P500 组件放在一个文件夹中,存储了尽可能多的 .hdf 文件。每个 .hdf 文件都有自己的多索引(年-周-分)。 顺序代码示例(非并行化): im
到目前为止,我是这样做的: rets=set(pool.map_async(my_callback, args.hosts).get(60*4)) 如果超时,我会得到一个异常: File "/usr
参见下面的示例和执行结果: #!/usr/bin/env python3.4 from multiprocessing import Pool import time import os def in
我的任务是监听 UDP 数据报,对其进行解码(数据报具有二进制信息),将解码后的信息放入字典中,将字典转储为 json 字符串,然后将 json 字符串发送到远程服务器(ActiveMQ)。 解码和发
我在 macOS 上工作,最近被 Python 3.8 多处理中“fork”到“spawn”的变化所困扰(参见 doc )。下面显示了一个简化的工作示例,其中使用“fork”成功但使用“spawn”失
multiprocessing.Queue 的文档指出从项目入队到其腌制表示刷新到底层管道之间存在一点延迟。显然,您可以将一个项目直接放入管道中(它没有说明其他情况,并且暗示情况就是如此)。 为什么管
我运行了一些测试代码来检查在 Linux 中使用 Pool 和 Process 的性能。我正在使用 Python 2.7。 multiprocessing.Pool 的源代码似乎显示它正在使用 mul
我在 Windows Standard Embedded 7 上运行 python 3.4.3。我有一个继承 multiprocessing.Process 的类。 在类的 run 方法中,我为进程对
我知道multiprocessing.Process类似于 threading.Thread当我子类 multiprocessing.Process 时要创建一个进程,我发现我不必调用 __init_
我有教科书声明说在多处理器系统中不建议禁用中断,并且会花费太多时间。但我不明白这一点,谁能告诉我多处理器系统禁用中断的过程?谢谢 最佳答案 在 x86(和其他架构,AFAIK)上,启用/禁用中断是基于
我正在执行下面的代码并且它工作正常,但它不会产生不同的进程,而是有时所有都在同一个进程中运行,有时 2 个在一个进程中运行。我正在使用 4 cpu 机器。这段代码有什么问题? def f(values
我是一名优秀的程序员,十分优秀!