- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个带有浮点型字段的数据结构。这些结构的集合需要按 float 的值排序。是否有基数排序实现。
如果没有,是否有快速访问指数、符号和尾数的方法。因为如果你首先对尾数、指数和最后一次的指数对 float 进行排序。您在 O(n) 中对 float 进行排序。
最佳答案
更新:
我对这个主题很感兴趣,所以我坐下来实现了它(使用 this very fast and memory conservative implementation )。我还读了this one (感谢 celion)并发现您甚至不必将 float 拆分为尾数和指数来对其进行排序。您只需要一对一地取位并执行 int 排序。你只需要关心负值,在算法结束时必须将负值倒置在正值前面(我在算法的最后一次迭代中一步完成,以节省一些 cpu 时间)。
所以这是我的浮点基数排序:
public static float[] RadixSort(this float[] array)
{
// temporary array and the array of converted floats to ints
int[] t = new int[array.Length];
int[] a = new int[array.Length];
for (int i = 0; i < array.Length; i++)
a[i] = BitConverter.ToInt32(BitConverter.GetBytes(array[i]), 0);
// set the group length to 1, 2, 4, 8 or 16
// and see which one is quicker
int groupLength = 4;
int bitLength = 32;
// counting and prefix arrays
// (dimension is 2^r, the number of possible values of a r-bit number)
int[] count = new int[1 << groupLength];
int[] pref = new int[1 << groupLength];
int groups = bitLength / groupLength;
int mask = (1 << groupLength) - 1;
int negatives = 0, positives = 0;
for (int c = 0, shift = 0; c < groups; c++, shift += groupLength)
{
// reset count array
for (int j = 0; j < count.Length; j++)
count[j] = 0;
// counting elements of the c-th group
for (int i = 0; i < a.Length; i++)
{
count[(a[i] >> shift) & mask]++;
// additionally count all negative
// values in first round
if (c == 0 && a[i] < 0)
negatives++;
}
if (c == 0) positives = a.Length - negatives;
// calculating prefixes
pref[0] = 0;
for (int i = 1; i < count.Length; i++)
pref[i] = pref[i - 1] + count[i - 1];
// from a[] to t[] elements ordered by c-th group
for (int i = 0; i < a.Length; i++){
// Get the right index to sort the number in
int index = pref[(a[i] >> shift) & mask]++;
if (c == groups - 1)
{
// We're in the last (most significant) group, if the
// number is negative, order them inversely in front
// of the array, pushing positive ones back.
if (a[i] < 0)
index = positives - (index - negatives) - 1;
else
index += negatives;
}
t[index] = a[i];
}
// a[]=t[] and start again until the last group
t.CopyTo(a, 0);
}
// Convert back the ints to the float array
float[] ret = new float[a.Length];
for (int i = 0; i < a.Length; i++)
ret[i] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);
return ret;
}
它比 int 基数排序稍慢,因为在函数的开头和结尾进行数组复制,其中 float 按位复制到 int 并返回。尽管如此,整个函数还是 O(n)。无论如何,比您建议的连续排序 3 次要快得多。我看不到太多优化空间了,但如果有人这样做:请随时告诉我。
要降序排序,请在最后更改此行:
ret[i] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);
为此:
ret[a.Length - i - 1] = BitConverter.ToSingle(BitConverter.GetBytes(a[i]), 0);
测量:
我设置了一些简短的测试,包含 float 的所有特殊情况(NaN、+/-Inf、最小值/最大值、0)和随机数。它的排序顺序与 Linq 或 Array.Sort
对 float 的排序完全相同:
NaN -> -Inf -> Min -> Negative Nums -> 0 -> Positive Nums -> Max -> +Inf
所以我用大量 1000 万个数字进行了测试:
float[] test = new float[10000000];
Random rnd = new Random();
for (int i = 0; i < test.Length; i++)
{
byte[] buffer = new byte[4];
rnd.NextBytes(buffer);
float rndfloat = BitConverter.ToSingle(buffer, 0);
switch(i){
case 0: { test[i] = float.MaxValue; break; }
case 1: { test[i] = float.MinValue; break; }
case 2: { test[i] = float.NaN; break; }
case 3: { test[i] = float.NegativeInfinity; break; }
case 4: { test[i] = float.PositiveInfinity; break; }
case 5: { test[i] = 0f; break; }
default: { test[i] = test[i] = rndfloat; break; }
}
}
并停止了不同排序算法的时间:
Stopwatch sw = new Stopwatch();
sw.Start();
float[] sorted1 = test.RadixSort();
sw.Stop();
Console.WriteLine(string.Format("RadixSort: {0}", sw.Elapsed));
sw.Reset();
sw.Start();
float[] sorted2 = test.OrderBy(x => x).ToArray();
sw.Stop();
Console.WriteLine(string.Format("Linq OrderBy: {0}", sw.Elapsed));
sw.Reset();
sw.Start();
Array.Sort(test);
float[] sorted3 = test;
sw.Stop();
Console.WriteLine(string.Format("Array.Sort: {0}", sw.Elapsed));
输出是(更新:现在使用发布版本运行,而不是调试):
RadixSort: 00:00:03.9902332
Linq OrderBy: 00:00:17.4983272
Array.Sort: 00:00:03.1536785
大约是 Linq 的四倍多。那还不错。但仍然没有 Array.Sort
快,但也没有那么差。但我真的对这个感到惊讶:我预计它在非常小的阵列上会比 Linq 稍慢。但后来我只用 20 个元素进行了测试:
RadixSort: 00:00:00.0012944
Linq OrderBy: 00:00:00.0072271
Array.Sort: 00:00:00.0002979
甚至这次我的 Radixsort 比 Linq 快,但方式比数组排序慢。 :)
更新 2:
我进行了更多测量并发现了一些有趣的事情:更长的组长度常量意味着更少的迭代和更多的内存使用。如果您使用 16 位的组长度(仅 2 次迭代),则在对小数组进行排序时会产生巨大的内存开销,但如果涉及大于大约 100k 元素的数组,您可以击败 Array.Sort
,即使不是很多。图表轴都是对数的:
(来源:daubmeier.de)
关于c# - C# 中的 float 是否有一个好的基数排序实现,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/2685035/
背景: 我最近一直在使用 JPA,我为相当大的关系数据库项目生成持久层的轻松程度给我留下了深刻的印象。 我们公司使用大量非 SQL 数据库,特别是面向列的数据库。我对可能对这些数据库使用 JPA 有一
我已经在我的 maven pom 中添加了这些构建配置,因为我希望将 Apache Solr 依赖项与 Jar 捆绑在一起。否则我得到了 SolarServerException: ClassNotF
interface ITurtle { void Fight(); void EatPizza(); } interface ILeonardo : ITurtle {
我希望可用于 Java 的对象/关系映射 (ORM) 工具之一能够满足这些要求: 使用 JPA 或 native SQL 查询获取大量行并将其作为实体对象返回。 允许在行(实体)中进行迭代,并在对当前
好像没有,因为我有实现From for 的代码, 我可以转换 A到 B与 .into() , 但同样的事情不适用于 Vec .into()一个Vec . 要么我搞砸了阻止实现派生的事情,要么这不应该发
在 C# 中,如果 A 实现 IX 并且 B 继承自 A ,是否必然遵循 B 实现 IX?如果是,是因为 LSP 吗?之间有什么区别吗: 1. Interface IX; Class A : IX;
就目前而言,这个问题不适合我们的问答形式。我们希望答案得到事实、引用资料或专业知识的支持,但这个问题可能会引发辩论、争论、投票或扩展讨论。如果您觉得这个问题可以改进并可能重新打开,visit the
我正在阅读标准haskell库的(^)的实现代码: (^) :: (Num a, Integral b) => a -> b -> a x0 ^ y0 | y0 a -> b ->a expo x0
我将把国际象棋游戏表示为 C++ 结构。我认为,最好的选择是树结构(因为在每个深度我们都有几个可能的移动)。 这是一个好的方法吗? struct TreeElement{ SomeMoveType
我正在为用户名数据库实现字符串匹配算法。我的方法采用现有的用户名数据库和用户想要的新用户名,然后检查用户名是否已被占用。如果采用该方法,则该方法应该返回带有数据库中未采用的数字的用户名。 例子: “贾
我正在尝试实现 Breadth-first search algorithm , 为了找到两个顶点之间的最短距离。我开发了一个 Queue 对象来保存和检索对象,并且我有一个二维数组来保存两个给定顶点
我目前正在 ika 中开发我的 Python 游戏,它使用 python 2.5 我决定为 AI 使用 A* 寻路。然而,我发现它对我的需要来说太慢了(3-4 个敌人可能会落后于游戏,但我想供应 4-
我正在寻找 Kademlia 的开源实现C/C++ 中的分布式哈希表。它必须是轻量级和跨平台的(win/linux/mac)。 它必须能够将信息发布到 DHT 并检索它。 最佳答案 OpenDHT是
我在一本书中读到这一行:-“当我们要求 C++ 实现运行程序时,它会通过调用此函数来实现。” 而且我想知道“C++ 实现”是什么意思或具体是什么。帮忙!? 最佳答案 “C++ 实现”是指编译器加上链接
我正在尝试使用分支定界的 C++ 实现这个背包问题。此网站上有一个 Java 版本:Implementing branch and bound for knapsack 我试图让我的 C++ 版本打印
在很多情况下,我需要在 C# 中访问合适的哈希算法,从重写 GetHashCode 到对数据执行快速比较/查找。 我发现 FNV 哈希是一种非常简单/好/快速的哈希算法。但是,我从未见过 C# 实现的
目录 LRU缓存替换策略 核心思想 不适用场景 算法基本实现 算法优化
1. 绪论 在前面文章中提到 空间直角坐标系相互转换 ,测绘坐标转换时,一般涉及到的情况是:两个直角坐标系的小角度转换。这个就是我们经常在测绘数据处理中,WGS-84坐标系、54北京坐标系
在软件开发过程中,有时候我们需要定时地检查数据库中的数据,并在发现新增数据时触发一个动作。为了实现这个需求,我们在 .Net 7 下进行一次简单的演示. PeriodicTimer .
二分查找 二分查找算法,说白了就是在有序的数组里面给予一个存在数组里面的值key,然后将其先和数组中间的比较,如果key大于中间值,进行下一次mid后面的比较,直到找到相等的,就可以得到它的位置。
我是一名优秀的程序员,十分优秀!