- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在开始一个 Tensorflow 项目,并且正在定义和创建我的特征列。然而,我有成百上千的特征——这是一个相当广泛的数据集。即使经过预处理和清理,我也有很多列。
创建 feature_column
的传统方法在 Tensorflow tutorial 中定义甚至这个StackOverflow post .您基本上为每个特征列声明并初始化一个 Tensorflow 对象:
gender = tf.feature_column.categorical_column_with_vocabulary_list(
"gender", ["Female", "Male"])
如果您的数据集只有几列,这一切都很好,但就我而言,我肯定不希望有数百行代码来初始化不同的 feature_column
对象。
解决此问题的最佳方法是什么?我注意到在本教程中,所有列都收集为一个列表:
base_columns = [
gender, native_country, education, occupation, workclass, relationship,
age_buckets,
]
最终会传递给您的估算器:
m = tf.estimator.LinearClassifier(
model_dir=model_dir, feature_columns=base_columns)
那么处理数百列的 feature_column
创建的理想方式是将它们直接附加到列表中吗?是这样的吗?
my_columns = []
for col in df.columns:
if is_string_dtype(df[col]): #is_string_dtype is pandas function
my_column.append(tf.feature_column.categorical_column_with_hash_bucket(col,
hash_bucket_size= len(df[col].unique())))
elif is_numeric_dtype(df[col]): #is_numeric_dtype is pandas function
my_column.append(tf.feature_column.numeric_column(col))
这是创建这些特征列的最佳方式吗?还是我缺少 Tensorflow 的某些功能,这些功能让我可以绕过此步骤?
最佳答案
您在问题中发布的内容是有道理的。基于您自己的代码的小型扩展:
import pandas.api.types as ptypes
my_columns = []
for col in df.columns:
if ptypes.is_string_dtype(df[col]):
my_columns.append(tf.feature_column.categorical_column_with_hash_bucket(col,
hash_bucket_size= len(df[col].unique())))
elif ptypes.is_numeric_dtype(df[col]):
my_columns.append(tf.feature_column.numeric_column(col))
elif ptypes.is_categorical_dtype(df[col]):
my_columns.append(tf.feature_column.categorical_column(col,
hash_bucket_size= len(df[col].unique())))
关于python - 在 Tensorflow 中创建许多特征列,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/46834680/
设置 我希望能够定义一个特征,使得任何实现该特征的结构不仅必须实现函数,而且还必须为某些常量指定值。所以也许是这样的: trait MyTrait { const MY_CONST: u8;
在我的 Web 应用程序中,授权用户至少有 4 个“方面”:http session 相关数据、持久数据、facebook 数据、运行时业务数据。 我决定使用案例类组合而不是特征至少有两个原因: 性状
我正在尝试使用以下代码从类中获取完整数据成员的列表: import std.stdio; import std.traits; class D { static string[] integr
我正在尝试实现 From对于我的一种类型。它应该消耗任意长度的行(仅在运行时已知)并从行中获取数据。编译器提示 &[&str; 2]不是 &[&str] ,即它不能将固定大小的切片转换为任意长度的切片
有人可以请你这么好心,并指出一种提取拟合树中使用的列/特征的方法,使用如下代码: library(dplyr) library(caret) library(rpart) df % dplyr
假设我定义了一个 Group所有组操作的特征。是否可以创建一个包装器AGroup超过 Group无需手动派生所有操作? 基本上,我想要这个: #[derive (Copy, Debug, Clone,
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
我想让一个案例类扩展一个特征 以下是我的要求: 我需要为 child 使用案例类。这是一个硬性要求,因为 scopt ( https://github.com/scopt/scopt ) parent
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
不确定标题是否完全有意义,对此感到抱歉。我是机器学习新手,正在使用 Scikit 和决策树。 这就是我想做的;我想获取所有输入并包含一个独特的功能,即客户端 ID。现在,客户端 ID 是唯一的,无法以
我想读取具有 Eigen 的 MNIST 数据集,每个文件都由一个矩阵表示。我希望在运行时确定矩阵大小,因为训练集和测试集的大小不同。 Map> MNIST_dataset((uchar*)*_dat
在 MATLAB 中,我可以选择一个分散的子矩阵,例如: A = [1 ,2 ,3;4,5,6;7,8,9] A([1,3],[1,3]) = [1,3;7,9] 有没有用 Eigen 做到这一点的聪
我在执行 Into 时遇到问题Rust 中通用结构的特征。下面是我正在尝试做的简化版本: struct Wrapper { value: T } impl Into for Wrapper {
我有这段 matlab 代码,我想用 Eigen 编写: [V_K,D_K] = eig(K); d_k = diag(D_K); ind_k = find(d_k > 1e-8); d_k(ind_
我正在使用 Eigen C++ 矩阵库,我想获取对矩阵列的引用。文档说要使用 matrix_object.col(index),但这似乎返回了一个表示列的对象,而不是简单地引用原始矩阵对象中的列。我担
在乘以很多旋转矩阵之后,由于舍入问题(去正交化),最终结果可能不再是有效的旋转矩阵 重新正交化的一种方法是遵循以下步骤: 将旋转矩阵转换为轴角表示法 ( link ) 将轴角转换回旋转矩阵 ( lin
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
我是一名优秀的程序员,十分优秀!