- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试了解 pandas
MultiIndex
DataFrame
以及如何为它们分配数据。具体来说,我感兴趣的是分配与另一个较小数据框匹配的整个 block 。
ix = pd.MultiIndex.from_product([['A', 'B'], ['a', 'b', 'c', 'd']])
df = pd.DataFrame(index=ix, columns=['1st', '2nd', '3rd'], dtype=np.float64)
df_ = pd.DataFrame(index=['a', 'b', 'c', 'd'], columns=['1st', '2nd', '3rd'], data=np.random.rand(4, 3))
df_
1st 2nd 3rd
a 0.730251 0.468134 0.876926
b 0.104990 0.082461 0.129083
c 0.993608 0.117799 0.341811
d 0.784950 0.840145 0.016777
df
除了所有的值都是 NaN
并且有两个 block A
和 B
之外是相同的.现在,如果我想将 df_
的值分配给 df
我想我可以做类似的事情
df.loc['A',:] = df_ # Runs, does not work
df.loc[('A','a'):('A','d')] = df_ # AssertionError (??) 'Start slice bound is non-scalar'
df.loc[('A','a'):('A','d')] # No AssertionError (??)
idx = pd.IndexSlice
df.loc[idx['A', :]] = df_ # Runs, does not work
这些都不起作用,它们将 df
中的所有值保留为 NaN
,尽管 df.loc[idx['A', :]]
为我提供了与子帧 (df_
) 完全匹配的数据帧片段。那么这是在 View 上设置值的情况吗?显式迭代 df_
中的索引有效
# this is fine
for v in df_.index:
df.loc[idx['A', v]] = df_.loc[v]
# this is also fine
for v in df_.index:
df.loc['A', v] = df_.loc[v]
是否有可能像这样分配整个 block (有点像 NumPy
)?如果不是,也没关系,我只是想了解系统的工作原理。
有一个关于索引切片器的相关问题,但它是关于将单个值分配给 DataFrame
的屏蔽部分,而不是关于分配 block 。 Pandas : Proper way to set values based on condition for subset of multiindex dataframe
最佳答案
当你使用
df.loc['A', :] = df_
Pandas 尝试将 df_
的索引与的子 DataFrame 的索引对齐df
。然而,在 point in the code在执行对齐的地方,sub-DataFrame 有一个MultiIndex,而不是你看到的单个索引作为结果df.loc['A', :]
.
因此对齐失败,因为 df_
具有单个索引,而不是 MultiIndex是需要的。看df_
的索引确实是问题,注意
ix_ = pd.MultiIndex.from_product([['A'], ['a', 'b', 'c', 'd']])
df_.index = ix_
df.loc['A', :] = df_
print(df)
成功,产生类似的东西
A a 0.229970 0.730824 0.784356
b 0.584390 0.628337 0.318222
c 0.257192 0.624273 0.221279
d 0.787023 0.056342 0.240735
B a NaN NaN NaN
b NaN NaN NaN
c NaN NaN NaN
d NaN NaN NaN
当然,您可能不希望每次都创建一个新的 MultiIndex您想要分配一个值 block 的时间。所以相反,要解决这个问题对齐问题,可以使用一个NumPy数组作为赋值:
df.loc['A', :] = df_.values
因为 df_.values
是一个 NumPy 数组并且数组没有索引,no alignment isperformed并且分配产生与上述相同的结果。当你不想索引对齐时使用 NumPy 数组的技巧适用于使用 Pandas 的许多情况。
另请注意,按 NumPy 数组赋值还可以帮助您执行更复杂的赋值,例如对不连续的行进行赋值:
idx = pd.IndexSlice
df.loc[idx[:,('a','b')], :] = df_.values
产量
In [85]: df
Out[85]:
1st 2nd 3rd
A a 0.229970 0.730824 0.784356
b 0.584390 0.628337 0.318222
c NaN NaN NaN
d NaN NaN NaN
B a 0.257192 0.624273 0.221279
b 0.787023 0.056342 0.240735
c NaN NaN NaN
d NaN NaN NaN
例如。
关于python - 来自另一个数据框的 Pandas 多索引分配,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/28431519/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!