- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在尝试实现一个以梅森素数 (231-1) 作为模数的随机数生成器。以下工作代码基于几个相关帖子:
但是,
它不适用于 uint32_t hi, lo;
,这意味着我不了解问题的有符号与无符号方面。
根据上面的#2,我期待答案是 (hi+lo)。这意味着,我不明白为什么需要以下声明。
if (x1 > r)
x1 += r + 2;
有人可以澄清我困惑的根源吗?
代码本身可以改进吗?
生成器应该避免使用 0 或 231-1 作为种子吗?
质数 (2p-k) 的代码会发生什么变化?
#include <inttypes.h>
// x1 = a*x0 (mod 2^31-1)
int32_t lgc_m(int32_t a, int32_t x)
{
printf("x %"PRId32"\n", x);
if (x == 2147483647){
printf("x1 %"PRId64"\n", 0);
return (0);
}
uint64_t c, r = 1;
c = (uint64_t)a * (uint64_t)x;
if (c < 2147483647){
printf("x1 %"PRId64"\n", c);
return (c);
}
int32_t hi=0, lo=0;
int i, p = 31;//2^31-1
for (i = 1; i < p; ++i){
r |= 1 << i;
}
lo = (c & r) ;
hi = (c & ~r) >> p;
uint64_t x1 = (uint64_t ) (hi + lo);
// NOT SURE ABOUT THE NEXT STATEMENT
if (x1 > r)
x1 += r + 2;
printf("c %"PRId64"\n", c);
printf("r %"PRId64"\n", r);
printf("\tlo %"PRId32"\n", lo);
printf("\thi %"PRId32"\n", hi);
printf("x1 %"PRId64"\n", x1);
printf("\n" );
return((int32_t) x1);
}
int main(void)
{
int32_t r;
r = lgc_m(1583458089, 1);
r = lgc_m(1583458089, 2000000000);
r = lgc_m(1583458089, 2147483646);
r = lgc_m(1583458089, 2147483647);
return(0);
}
最佳答案
下面的if语句
if (x1 > r)
x1 += r + 2;
应该写成
if (x1 > r)
x1 -= r;
两个结果都是相同的模 2^31:
x1 + r + 2 = x1 + 2^31 - 1 + 2 = x1 + 2^31 + 1
x1 - r = x1 - (2^31 - 1) = x1 - 2^31 + 1
第一个解决方案溢出 int32_t
并假设从 uint64_t
到 int32_t
的转换是模 2^31。虽然许多 C 编译器以这种方式处理转换,但这并不是 C 标准强制要求的。实际结果是实现定义的。
第二个解决方案避免了溢出并适用于 int32_t
和 uint32_t
。
您还可以为 r
使用整数常量:
uint64_t r = 0x7FFFFFFF; // 2^31 - 1
或者干脆
uint64_t r = INT32_MAX;
编辑:对于形式为 2^p-k 的素数,您必须使用带 p 位的掩码并计算结果
uint32_t x1 = (k * hi + lo) % ((1 << p) - k)
如果 k * hi + lo
可以溢出 uint32_t
(即 (k + 1) * (2^p - 1) >= 2^ 32
),你必须使用 64 位算法:
uint32_t x1 = ((uint64_t)a * x) % ((1 << p) - k)
根据平台的不同,后者可能更快。
关于c - C中线性同余发生器的快速模乘模素数,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31037094/
是否有更快的算法来计算 (n! modulo m)。在每个乘法步骤都比减少更快。并且有没有比左右二元法更快的算法来计算 (a^p modulo m)。 这是我的代码:n!模数m ans=1 for(i
我有非常简单的代码循环遍历数组中的元素并检查是否index % 2 == 0。如果是这样,它应该改变颜色。 var e = document.getElementById("list").childN
让我简短一点。我正在计算 alert((Math.pow(7,35))%71) 但它给了我 61,而结果必须是 70。怎么了? 最佳答案 正如其他人之前提到的关于使用 Math.pow(7,35) 的
我试图弄清楚如何在汇编中计算模 10,所以我在 gcc 中编译了以下 c 代码,看看它想出了什么。 unsigned int i=999; unsigned int j=i%10; 令我惊讶的是我得到
例如使用以下输入: int num = -100 int divisor = 10 => -100 mod 10 = 0 (Edge-case: negative numbers as inpu
这个问题在这里已经有了答案: Random float number generation (14 个答案) 关闭 9 年前。 在 C++ 中,我希望得到一个随机 float 。据我所知,典型的随机
我试图找到潜在阶乘素数的除数(n!+-1 形式的数),因为我最近购买了 Skylake-X 工作站,我认为我可以使用 AVX512 指令提高一些速度。 算法简单,主要步骤是对同一个除数重复取模。主要是
我有一个保存角度(以度为单位)的变量,该角度可以是正值也可以是负值。我现在需要确保该数字仅在 0 到 360 之间。该数字是 double 。 执行此操作的好算法是什么?简单地执行角度 % 360 是
我有一个 UInt8 数组,我想计算 CheckSum8 模 256。如果字节总和小于 255,checkSum 函数返回正确的值。 例如 let bytes1 : [UInt8] = [1, 0xa
使用海湾合作委员会: printf("%i \n", -1 % (int)4); printf("%u \n", -1 % (unsigned int)4); 输出: -1 3 我可以跨平台依赖这种行
我无法理解代码中几行的含义。我最近开始学习 C++,并阅读了 Bjarne Stroustrup 的“编程:使用 C++ 的原理和实践”。第四章有个问题让我很困惑,所以我在网上搜索了一个解决方案以供引
我试图解决一个涉及大阶乘模质数的问题,并在另一个人的解决方案中发现了以下算法: long long factMod (long long n, long long p) { long long
我正在尝试计算 𝐹𝑛 模 𝑚,其中 𝑛 可能非常大:高达 10^18,𝐹𝑛 是第 n 个斐波那契数这是我的代码,它适用于小数字,但对于大数字,它会抛出 OutOfMemoryError 或
我有两个以 16 为模的循环整数,因此它们的值介于 0 和 15 之间。 我需要比较两个数字以确定 n_1 是否大于 n_0 n_1 > n_0 很明显,这个没有准确定义,所以我定义n_1如果小于前面
我一直在尝试使用 Java 处理一些更大的值,但遇到了一些我不理解的问题。出于某种原因,Java 似乎喜欢给我垃圾数据(尽管,我更可能告诉它给我垃圾数据) 这是一个片段,为清楚起见进行了编辑:
好吧,我今天做了一个小函数,它应该会生成一个随机字符串。 std::string randString(size_t length) { std::string randStr; fo
Ruby 的负数取模规则不明确。在 IRB 中: -7 % 3 == 2 应该是1!为什么? 最佳答案 因为 -7/3 在 Ruby 的整数除法语义下是 -3。 3*-3 是 -9,所以会留下 2
这个问题在这里已经有了答案: Calculating pow(a,b) mod n (14 个答案) 关闭 6 年前。 在 Javascript 中是否有获取大数模数的技巧。我用 modulo(7,
此代码使用公式 (a^x) % 101 检查值 a 是否唯一映射到值 1 到 100 local function f(a) found = {} bijective = true
在《Core Java Volume1》一书中有一条警告: CAUTION: The right-hand side argument of the shift operators is reduce
我是一名优秀的程序员,十分优秀!