gpt4 book ai didi

c - 释放循环双向链表中的内存

转载 作者:太空狗 更新时间:2023-10-29 17:23:49 26 4
gpt4 key购买 nike

valgrind 告诉我,我在 XX block 中有 XX 个字节,这些字节肯定丢失了记录等等

源代码在 malloc 中,但是,我认为这是因为我没有为 malloc 释放足够的内存。不管怎样,我已经提供了我认为导致堆错误的代码。

我知道我没有释放 list_remove 中的内存,我很确定这是问题的唯一来源。它可能需要一些温度变化,但我不知道这是否是唯一的问题。

list_t *list_remove(list_t *list, list_t *node) {
list_t *oldnode = node;
node->prev->next = node->next;
node->next->prev = node->prev;
if (list != oldnode) {
free(oldnode);
return list;
} else {
list_t *value = list->next == list ? NULL : list->next;
free(oldnode);
return value;
}
}

void list_free(list_t *list) {
if (list) {
while (list_remove(list, list_last(list)) != NULL) {}
}
}

list last 只是给出列表的最后一个节点。

编辑:我很抱歉没有提供足够的信息,Kerrek SB,alk。这是代码的其余部分,如您所见,malloc 出现在 newnode 中,我可以在此处开始创建新列表。该结构非常简单,有一个值和一个上一个,下一个:

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include "ll.h"

struct list {
char *value;
struct list *next;
struct list *prev;
};

const char *list_node_value(list_t *node) {
return node->value;
}

list_t *list_first(list_t *list) {
return list;
}

list_t *list_last(list_t *list) {
return list->prev;
}

list_t *list_next(list_t *node) {
return node->next;
}

list_t *list_previous(list_t *node) {
return node->prev;
}

static void failed_allocation(void) {
fprintf(stderr, "Out of memory.\n");
abort();
}

static list_t *new_node(const char *value) {
list_t *node = malloc(sizeof(list_t));
if (!node) failed_allocation();
node->value = malloc(strlen(value)+1);
if (!node->value) failed_allocation();
strcpy(node->value, value);
return node;
}

list_t *list_insert_before(list_t *list, list_t *node, const char *value) {
list_t *insert_node = new_node(value);
insert_node->prev = node->prev;
insert_node->next = node;
insert_node->next->prev = insert_node;
insert_node->prev->next = insert_node;
if (list == node) {
return insert_node;
} else {
return list;
}
}

list_t *list_append(list_t *list, const char *value) {
if (list) {
(void) list_insert_before(list, list, value);
return list;
} else {
list_t *node = new_node(value);
node->prev = node->next = node;
return node;
}
}

list_t *list_prepend(list_t *list, const char *value) {
if (list) {
return list_insert_before(list, list, value);
} else {
list_t *node = new_node(value);
node->prev = node->next = node;
return node;
}
}

list_t *list_remove(list_t *list, list_t *node) {
list_t *oldnode = node;
node->prev->next = node->next;
node->next->prev = node->prev;
if (list != oldnode) {
free(oldnode);
return list;
} else {
list_t *value = list->next == list ? NULL : list->next;
free(oldnode);
return value;
}
}

void list_free(list_t *list) {
if (list) {
while (list_remove(list, list_last(list)) != NULL) {}
}
}

void list_foreach(list_t *list, void (*function)(const char*)) {
if (list) {
list_t *cur = list_first(list);
do {
function(cur->value);
cur = cur->next;
} while (cur != list_first(list));
}
}

求助!它仍然给我一个堆中的内存泄漏错误...

最佳答案

如果您担心 list_free() 我建议您在源头加强删除链 下面假设,当所有完成后,您希望 *list 为 NULL(因为整个列表刚刚被删除)。

void list_free(list_t **list) 
{
if (list && *list)
{
list_t* next = (*list)->next;
while (next && (next != *list))
{
list_t *tmp = next;
next = next->next;
free(tmp);
}

free(*list);
*list = NULL;
}
}

或者类似的东西。通过传递外部列表指针的地址 调用:

list_t *list = NULL;

.. initialize and use your list...

// free the list
list_free(&list);

编辑 在 OP 发布更多代码后,有几件事很明显。

  1. list_newnode() 不会设置 prevnext 的值,因此它们包含垃圾。
  2. 此处的所有其他函数都假定 (1) 已正确初始化 next 和 prev。坦率地说,我很惊讶这在第二次添加开始时没有出错。

循环列表插入必须假设被插入的新节点可以是初始列表本身。看来您正在努力比需要的努力。请记住,循环列表可以将任何 节点作为列表头,这并不比当前列表“头”被删除 时更好。发生这种情况时,必须有一种机制可以为调用者重新建立新的列表“头”。同样的机制必须允许在删除最后一个节点时将列表头设置为 NULL。

您的代码似乎在不使用指向指针的指针的情况下公开尝试执行此操作,但它们使循环链表的任务如此变得容易得多。您的代码中需要注意的其他事项:

  • 您的大多数函数似乎都试图通过返回值向调用者建议 列表头应该是什么。相反,他们应该通过输入/输出参数执行它。
  • 任何相对于另一个节点插入新节点的函数都应返回新节点。
  • list_prepend()list_append() 函数应被视为相对于列表头的核心 插入函数。其他 API(list_insert_before()list_insert_after() 等)应该完全相对于您要访问的有效existing 节点在之前或之后插入,正如我上面所说,返回指向新插入节点的指针总是。您将看到两个非基于根的插入器函数不再传递列表头。
  • 除了在执行取消引用之前没有检查无效指针之外,您的大部分实用程序函数都是正确的。还有一些没有,但至少现在是可以控制的。

以下是围绕您的大部分功能构建的代码床。实际的节点放置例程已经完成,我尽我所能对其进行了评论。主要测试夹具非常简单。如果这里有重大错误,我相信 SO-watchtower 会很快指出它们,但代码的重点不仅仅是修复你的;这是一个学习的东西:

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <string.h>
#include <assert.h>

// node structure
typedef struct list_t {
char *value;
struct list_t *next;
struct list_t *prev;
} list_t;

static void failed_allocation(void) {
fprintf(stderr, "Out of memory.\n");
abort();
}


// initialize a linked list header pointer. Just sets it to NULL.
void list_init(list_t** listpp)
{
if (listpp)
*listpp = NULL;
}

// return the value-field of a valid list node.
// otherwise return NULL if node is NULL.
const char *list_node_value(list_t *node)
{
return (node ? node->value : NULL);
}

// return the next pointer (which may be a self-reference)
// of a valid list_t pointer.
list_t *list_next(list_t *node)
{
return (node ? node->next : NULL);
}

// return the previous pointer (which may be a self-reference)
// of a valid list_t pointer.
list_t *list_previous(list_t *node)
{
return (node ? node->prev : NULL);
}


// return the same pointer we were passed.
list_t *list_first(list_t *headp)
{
return headp;
}

// return the previous pointer (which may be a self-reference)
// of the given list-head pointer.
list_t *list_last(list_t *headp)
{
return list_previous(headp);
}

// insert a new item at the end of the list, which means it
// becomes the item previous to the head pointer. this handles
// the case of an initially empty list, which creates the first
// node that is self-referencing.
list_t *list_append(list_t **headpp, const char* value)
{
if (!headpp) // error. must pass the address of a list_t ptr.
return NULL;

// allocate a new node.
list_t* p = malloc(sizeof(*p));
if (p == NULL)
failed_allocation();

// setup duplicate value
p->value = (value) ? strdup(value) : NULL;

// insert the node into the list. note that this
// works even when the head pointer is an initial
// self-referencing node.
if (*headpp)
{
(*headpp)->prev->next = p;
p->prev = (*headpp)->prev;
p->next = (*headpp);
(*headpp)->prev = p;
}
else
{ // no prior list. we're it. self-reference
*headpp = p;
p->next = p->prev = p;
}
return p;
}


// insert a new value into the list, returns a pointer to the
// node allocated to hold the value. this will ALWAYS update
// the given head pointer, since the new node is being prepended
// to the list and by-definition becomes the new head.
list_t *list_prepend(list_t **headpp, const char* value)
{
list_append(headpp, value);
if (!(headpp && *headpp))
return NULL;
*headpp = (*headpp)->prev;
return *headpp;
}


// insert a new node previous to the given valid node pointer.
// returns a pointer to the inserted node, or NULL on error.
list_t *list_insert_before(list_t* node, const char* value)
{
// node *must* be a valid list_t pointer.
if (!node)
return NULL;
list_prepend(&node, value);
return node;
}


// insert a new node after the given valid node pointer.
// returns a pointer to the inserted node, or NULL on error.
list_t *list_insert_after(list_t* node, const char* value)
{
// node *must* be a valid list_t pointer.
if (!node)
return NULL;
node = node->next;
list_prepend(&node, value);
return node;
}


// delete a node referenced by the node pointer parameter.
// this *can* be the root pointer, which means the root
// must be set to the next item in the list before return.
int list_remove(list_t** headpp, list_t* node)
{
// no list, empty list, or no node all return immediately.
if (!(headpp && *headpp && node))
return 1;

// validate the node is in *this* list. it may seem odd, but
// we cannot just free it if the node may be in a *different*
// list, as it could be the other list's head-ptr.
if (*headpp != node)
{
list_t *p = (*headpp)->next;
while (p != node && p != *headpp)
p = p->next;
if (p == *headpp)
return 1;
}

// isolate the node pointer by connecting surrounding links.
node->next->prev = node->prev;
node->prev->next = node->next;

// move the head pointer if it is the same node
if (*headpp == node)
*headpp = (node != node->next) ? node->next : NULL;

// finally we can delete the node.
free(node->value);
free(node);
return 0;
}


// release the entire list. the list pointer will be reset to
// NULL when this is finished.
void list_free(list_t **headpp)
{
if (!(headpp && *headpp))
return;
while (*headpp)
list_remove(headpp, *headpp);
}


// enumerate the list starting at the given node.
void list_foreach(list_t *listp, void (*function)(const char*))
{
if (listp)
{
list_t *cur = listp;
do {
function(cur->value);
cur = cur->next;
} while (cur != listp);
}
printf("\n");
}

// printer callback
void print_str(const char* value)
{
printf("%s\n", value);
}

// main entrypoint
int main(int argc, char *argv[])
{
list_t *listp;
list_init(&listp);

// insert some new entries
list_t* hello = list_append(&listp, "Hello, Bedrock!!");
assert(NULL != hello);
assert(listp == hello);

// insert Fred prior to hello. does not change the list head.
list_t* fred = list_insert_before(hello, "Fred Flintstone");
assert(NULL != fred);
assert(listp == hello);
// Hello, Bedrock!!
// Fred Flintstone
list_foreach(listp, print_str);

// insert Wilma priot to Fred. does not change the list head.
list_t* wilma = list_insert_before(fred, "Wilma Flintstone");
assert(NULL != wilma);
assert(list_next(wilma) == fred);
assert(list_previous(wilma) == hello);
// Hello, Bedrock!!
// Wilma Flintstone
// Fred Flintstone
list_foreach(listp, print_str);

list_t* barney = list_prepend(&listp, "Barney Rubble");
list_t* dino = list_insert_after(wilma, "Dino");
assert(barney != NULL);
assert(dino != NULL);
assert(listp == barney);
assert(list_previous(barney) == fred);
assert(list_next(barney) == hello);
// Barney Rubble
// Hello, Bedrock!!
// Wilma Flintstone
// Dino
// Fred Flintstone
list_foreach(listp, print_str);

// remove everyone, one at a time.
list_remove(&listp, fred); // will not relocate the list head.
// Barney Rubble
// Hello, Bedrock!!
// Wilma Flintstone
// Dino
list_foreach(listp, print_str);

list_remove(&listp, hello); // will not relocate the list head.
// Barney Rubble
// Wilma Flintstone
// Dino
list_foreach(listp, print_str);

list_remove(&listp, barney); // will relocate the list head.
// Wilma Flintstone
// Dino
list_foreach(listp, print_str);
assert(listp == wilma);
assert(list_next(wilma) == dino);
assert(list_previous(listp) == dino);

list_remove(&listp, wilma); // will relocate the list head.
// Dino
list_foreach(listp, print_str);

list_remove(&listp, dino); // will relocate the list head;

// generate a raft entries (a million of them)/
char number[32];
int i=0;
for (;i<1000000; i++)
{
sprintf(number, "%d", i);
list_append(&listp, number);
}

// now test freeing the entire list.
list_free(&listp);

return 0;
}

如果断言和转储是为了帮助验证算法的可靠性。其结果输出应与代码中的注释相匹配,为:

Hello, Bedrock!!
Fred Flintstone

Hello, Bedrock!!
Wilma Flintstone
Fred Flintstone

Barney Rubble
Hello, Bedrock!!
Wilma Flintstone
Dino
Fred Flintstone

Barney Rubble
Hello, Bedrock!!
Wilma Flintstone
Dino

Barney Rubble
Wilma Flintstone
Dino

Wilma Flintstone
Dino

Dino

最后的想法:我已经通过 valgrind 运行它并且没有发现任何泄漏。 我很肯定它不会直接满足您的需求。** 大部分会(其中一半已经存在)。

关于c - 释放循环双向链表中的内存,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/13343780/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com