gpt4 book ai didi

c - fortran 2d-FFTW 与 C 2d-FFTW 结果不一致

转载 作者:太空狗 更新时间:2023-10-29 17:23:25 25 4
gpt4 key购买 nike

我正在学习如何使用 Fortran 处理 FFTW 包。为了生成一个易于验证的示例,我计算了一个二维平面的功率谱,我用两个不同的叠加波填充它。这样,我就可以确切地知道功率谱中的峰值在哪里。

由于 FFTW 文档针对 C 的内容更为广泛,我首先在 C 中实现了该算法,这给了我相当满意的结果: power spectrum obtained with C“lambda1”和“lambda2”是已知的预期波长。蓝线是得到的功率谱。

然后我尝试用 fortran 做同样的事情,结果很奇怪: power spectrum obtained with fortran

我不知道去哪里寻找可能的错误。代码执行顺利。有人可以帮忙吗?

这是 C 代码,编译时使用:gcc stackexchange.c -o a.out -I/home/myname/.local/include -lfftw3 -lm -g -Wall (gcc 5.4 .0)

#include <fftw3.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int main(void)
{
// parameters
int Nx = 200;
int Ny = 100;
int nsamples = 200;
float pi = 3.1415926;
float physical_length_x = 20;
float physical_length_y = 10;
float lambda1 = 0.5;
float lambda2 = 0.7;
float dx = physical_length_x/Nx;
float dy = physical_length_y/Ny;
float dkx = 2*pi/physical_length_x;
float dky = 2*pi/physical_length_y;

// counters/iterators
int ind, i, j, ix, iy, ik;

// power spectra stuff
float *Pk, *distances_k, d, kmax;
float *Pk_field;


// FFTW vars and arrays
fftw_complex *in, *out;
fftw_plan my_plan;

// allocate arrays for input/output
in = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * Nx * Ny);
out = (fftw_complex *) fftw_malloc(sizeof(fftw_complex) * Nx * Ny);

// Create Plan
int n[2]; n[0] = Nx; n[1] = Ny;
my_plan = fftw_plan_dft(2, n, in, out, FFTW_FORWARD, FFTW_ESTIMATE);

// fill up array with a wave
for (i=0; i<Nx; i++){
for (j=0; j<Ny; j++){
ind = i*Ny + j;
in[ind][0] = cos(2.0*pi/lambda1*i*dx) + sin(2.0*pi/lambda2*j*dy);
}
}

// execute fft
fftw_execute(my_plan); /* repeat as needed */

// Calculate power spectrum: P(kx, ky) = |F[delta(x,y)]|^2
Pk_field = malloc(sizeof(float)*Nx*Ny);
for (i=0; i<Nx; i++){
for (j=0; j<Ny; j++){
ind = i*Ny+j;
Pk_field[ind] = out[ind][0]*out[ind][0] + out[ind][1]*out[ind][1];
}
}

Pk = calloc(nsamples, sizeof(float));
distances_k = malloc(nsamples*sizeof(float));
kmax = sqrt(pow((Nx/2+1)*dkx, 2) + pow((Ny/2+1)*dky, 2));
for(i=0; i<nsamples; i++){
distances_k[i]= 1.0001*i/nsamples*kmax; // add a little more to make sure kmax will fit
}

// histogrammize P(|k|)
for (i=0; i<Nx; i++){

if (i<Nx/2+1)
{ ix = i; }
else
{ ix = -Nx+i; }

for (j=0; j<Ny; j++){

if (j<Ny/2+1)
{ iy = j; }
else
{ iy = -Ny+j; }

ind = i*Ny + j;
d = sqrt(pow(ix*dkx,2)+pow(iy*dky,2));

for(ik=0; ik<nsamples; ik++){
if (d<=distances_k[ik] || ik==nsamples){
break;
}
}

Pk[ik] += Pk_field[ind];
}
}


//-----------------------------------
// write arrays to file.
// can plot them with plot_fftw.py
//-----------------------------------
FILE *filep;
filep = fopen("./fftw_output_2d_complex.txt", "w");
for (i=0; i<nsamples; i++){
fprintf(filep, "%f\t%f\n", distances_k[i], Pk[i]);
}
fclose(filep);

printf("Finished! Written results to ./fftw_output_2d_complex.txt\n");


//----------------------
// deallocate arrays
//----------------------
fftw_destroy_plan(my_plan);
fftw_free(in); fftw_free(out);

return 0;
}

这是 Fortran 代码,编译时使用:gfortran stackexchange.f03 -o a.out -L/home/my_name/.local/lib/-I/home/my_name/.local/include/-lfftw3 -g -Wall

program use_fftw

use,intrinsic :: iso_c_binding
implicit none
include 'fftw3.f03'

integer, parameter :: dp=kind(1.0d0)
integer, parameter :: Nx = 200
integer, parameter :: Ny = 100
integer, parameter :: nsamples = 200
real(dp), parameter :: pi = 3.1415926d0
real(dp), parameter :: physical_length_x = 20.d0
real(dp), parameter :: physical_length_y = 10.d0
real(dp), parameter :: lambda1 = 0.5d0
real(dp), parameter :: lambda2 = 0.7d0
real(dp), parameter :: dx = physical_length_x/real(Nx,dp)
real(dp), parameter :: dy = physical_length_y/real(Ny,dp)
real(dp), parameter :: dkx = 2.d0 * pi / physical_length_x
real(dp), parameter :: dky = 2.d0 * pi / physical_length_y

integer :: i, j, ix, iy, ik
real(dp):: kmax, d

complex(dp), allocatable, dimension(:,:) :: arr_in, arr_out, Pk_field
real(dp), allocatable, dimension(:) :: Pk, distances_k
integer*8 :: my_plan
integer :: n(2) = (/Nx, Ny/)


allocate(arr_in( 1:Nx,1:Ny))
allocate(arr_out(1:Nx,1:Ny))

! call dfftw_plan_dft_2d(my_plan, Nx, Ny, arr_in, arr_out, FFTW_FORWARD, FFTW_ESTIMATE) ! doesn't help either
call dfftw_plan_dft(my_plan, 2, n, arr_in, arr_out, FFTW_FORWARD, FFTW_ESTIMATE)

! fill up wave
do i = 1, Nx
do j = 1, Ny
arr_in(i,j) =cmplx(cos(2.0*pi/lambda1*i*dx)+sin(2.0*pi/lambda2*j*dy) , 0.d0, kind=dp)
enddo
enddo

! execute fft
call dfftw_execute_dft(my_plan, arr_in, arr_out)


allocate(Pk_field(1:Nx, 1:Ny))
allocate(distances_k(1:nsamples))
allocate(Pk(1:nsamples))
Pk=0
distances_k=0

! Get bin distances
kmax = sqrt(((Nx/2+1)*dkx)**2+((Ny/2+1)*dky)**2)*1.001
do i = 1, nsamples
distances_k(i) = i*kmax/nsamples
enddo

! Compute P(k) field, distances field
do i = 1, Nx
do j = 1, Ny
Pk_field(i,j) = arr_out(i,j)*conjg(arr_out(i,j))

if (i<=Nx/2+1) then
ix = i
else
ix = -Nx+i
endif
if (j<=Ny/2+1) then
iy = j
else
iy = -Ny+j
endif

d = sqrt((ix*dkx)**2+(iy*dky)**2)

do ik=1, nsamples
if (d<=distances_k(ik) .or. ik==nsamples) exit
enddo

Pk(ik) = Pk(ik)+real(Pk_field(i,j))
enddo
enddo

! write file
open(unit=666,file='./fftw_output_2d_complex.txt', form='formatted')
do i = 1, nsamples
write(666, '(2E14.5,x)') distances_k(i), Pk(i)
enddo
close(666)


deallocate(arr_in, arr_out, Pk, Pk_field, distances_k)
call dfftw_destroy_plan(my_plan)

write(*,*) "Finished! Written results to fftw_output_2d_complex.txt"

end program use_fftw

为了您的方便,这是我用来绘制结果的简短 python 脚本:

#!/usr/bin/python3

#====================================
# Plots the results of the FFTW
# example programs.
#====================================

import numpy as np
import matplotlib.pyplot as plt
from sys import argv
from time import sleep


errormessage="""
I require an argument: Which output file to plot.
Usage: ./plot_fftw.py <case>
options for case:
1 fftw_1d_complex.txt
2 fftw_2d_complex.txt
3 fftw_1d_real.txt
4 fftw_2d_real.txt

Please select a case: """



#----------------------
# Hardcoded stuff
#----------------------

file_dict={}
file_dict['1'] = ('fftw_output_1d_complex.txt', '1d complex fftw')
file_dict['2'] = ('fftw_output_2d_complex.txt', '2d complex fftw')
file_dict['3'] = ('fftw_output_1d_real.txt', '1d real fftw')
file_dict['4'] = ('fftw_output_2d_real.txt', '2d real fftw')

lambda1=0.5
lambda2=0.7




#------------------------
# Get case from cmdline
#------------------------

case = ''

def enforce_integer():
global case
while True:
case = input(errormessage)
try:
int(case)
break
except ValueError:
print("\n\n!!! Error: Case must be an integer !!!\n\n")
sleep(2)


if len(argv) != 2:
enforce_integer()
else:
try:
int(argv[1])
case = argv[1]
except ValueError:
enforce_integer()


filename,title=file_dict[case]




#-------------------------------
# Read and plot data
#-------------------------------

k, Pk = np.loadtxt(filename, dtype=float, unpack=True)

fig = plt.figure()

ax = fig.add_subplot(111)
ax.set_title("Power spectrum for "+title)
ax.set_xlabel("k")
ax.set_ylabel("P(k)")
# ax.plot(k, Pk, label='power spectrum')
ax.semilogx(k[k>0], Pk[k>0], label='power spectrum') # ignore negative k
ax.plot([2*np.pi/lambda1]*2, [Pk.min()-1, Pk.max()+1], label='expected lambda1')
ax.plot([2*np.pi/lambda2]*2, [Pk.min()-1, Pk.max()+1], label='expected lambda2')
ax.legend()

plt.show()

最佳答案

在直方图的计算中,循环的第一个索引对应于平均值 i。 e. “零频率”。

在C中,当i=0,j=0,ix=0,iy=0,d=0。那是正确的。对于fortran中数组的同一项,索引i=1,则ix=1,d不再为null。

那是零频率,但由于 C 和 Fortran 之间的索引差异,整个直方图被轻微污染。特别是,修改可能以不同方式影响正频率和负频率,从而触发图中观察到的双峰。

您能否尝试将 Fortran 中 ix 和 iy 的计算修改为:

  if (i-1<Nx/2+1) then
ix = i-1
else
ix = -Nx+i-1
endif
if (j-1<Ny/2+1) then
iy = j-1
else
iy = -Ny+j-1
endif

关于c - fortran 2d-FFTW 与 C 2d-FFTW 结果不一致,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/50726456/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com