- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个看似非常简单的并行 for
循环,它只是将零写入整数数组。但事实证明线程越多,循环越慢。我认为这是由于某些缓存抖动造成的,所以我研究了调度、 block 大小、__restrict__
、将并行 for 嵌套在并行 block 中,然后刷新。然后我注意到读取数组进行归约也比较慢。
这显然应该非常简单,并且应该接近线性加速。我在这里缺少什么?
完整代码:
#include <omp.h>
#include <vector>
#include <iostream>
#include <ctime>
void tic(), toc();
int main(int argc, const char *argv[])
{
const int COUNT = 100;
const size_t sz = 250000 * 200;
std::vector<int> vec(sz, 1);
std::cout << "max threads: " << omp_get_max_threads()<< std::endl;
std::cout << "serial reduction" << std::endl;
tic();
for(int c = 0; c < COUNT; ++ c) {
double sum = 0;
for(size_t i = 0; i < sz; ++ i)
sum += vec[i];
}
toc();
int *const ptr = vec.data();
const int sz_i = int(sz); // some OpenMP implementations only allow parallel for with int
std::cout << "parallel reduction" << std::endl;
tic();
for(int c = 0; c < COUNT; ++ c) {
double sum = 0;
#pragma omp parallel for default(none) reduction(+:sum)
for(int i = 0; i < sz_i; ++ i)
sum += ptr[i];
}
toc();
std::cout << "serial memset" << std::endl;
tic();
for(int c = 0; c < COUNT; ++ c) {
for(size_t i = 0; i < sz; ++ i)
vec[i] = 0;
}
toc();
std::cout << "parallel memset" << std::endl;
tic();
for(int c = 0; c < COUNT; ++ c) {
#pragma omp parallel for default(none)
for(int i = 0; i < sz_i; ++ i)
ptr[i] = 0;
}
toc();
return 0;
}
static clock_t ClockCounter;
void tic()
{
ClockCounter = std::clock();
}
void toc()
{
ClockCounter = std::clock() - ClockCounter;
std::cout << "\telapsed clock ticks: " << ClockCounter << std::endl;
}
运行这个会产生:
g++ omp_test.cpp -o omp_test --ansi -pedantic -fopenmp -O1
./omp_test
max threads: 12
serial reduction
elapsed clock ticks: 1790000
parallel reduction
elapsed clock ticks: 19690000
serial memset
elapsed clock ticks: 3860000
parallel memset
elapsed clock ticks: 20800000
如果我使用 -O2
运行,g++ 能够优化串行减少并且我得到零时间,因此 -O1
。此外,放置 omp_set_num_threads(1);
使时间更加相似,尽管仍然存在一些差异:
g++ omp_test.cpp -o omp_test --ansi -pedantic -fopenmp -O1
./omp_test
max threads: 1
serial reduction
elapsed clock ticks: 1770000
parallel reduction
elapsed clock ticks: 7370000
serial memset
elapsed clock ticks: 2290000
parallel memset
elapsed clock ticks: 3550000
这应该是相当明显的,我觉得我没有看到非常基本的东西。我的 CPU 是具有超线程的 Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz,但在具有 4 个内核且没有超线程的同事的 i5 上观察到相同的行为。我们都在运行 Linux。
编辑
似乎有一个错误是在时间方面,运行时:
static double ClockCounter;
void tic()
{
ClockCounter = omp_get_wtime();//std::clock();
}
void toc()
{
ClockCounter = omp_get_wtime()/*std::clock()*/ - ClockCounter;
std::cout << "\telapsed clock ticks: " << ClockCounter << std::endl;
}
产生更多“合理”时间:
g++ omp_test.cpp -o omp_test --ansi -pedantic -fopenmp -O1
./omp_test
max threads: 12
serial reduction
elapsed clock ticks: 1.80974
parallel reduction
elapsed clock ticks: 2.07367
serial memset
elapsed clock ticks: 2.37713
parallel memset
elapsed clock ticks: 2.23609
但是,仍然没有加速,只是不再慢了。
EDIT2:
正如 user8046 所建议的,代码受内存限制很大。正如 Z boson 所建议的那样,串行代码很容易被优化掉,并且不确定这里测量的是什么。所以我做了一个小改动,将求和放在循环之外,这样它就不会在 c
的每次迭代中都归零。我还用 sum+=F(vec[i])
替换了归约操作,用 vec[i] = F(i)
替换了 memset 操作。运行为:
g++ omp_test.cpp -o omp_test --ansi -pedantic -fopenmp -O1 -D"F(x)=sqrt(double(x))"
./omp_test
max threads: 12
serial reduction
elapsed clock ticks: 23.9106
parallel reduction
elapsed clock ticks: 3.35519
serial memset
elapsed clock ticks: 43.7344
parallel memset
elapsed clock ticks: 6.50351
计算平方根给线程增加了更多工作,最终有一些合理的加速(大约 7x
,这是有道理的,因为超线程内核共享内存 channel )。
最佳答案
您发现了时间错误。仍然没有加速,因为您的两个测试用例都受内存限制。在典型的消费类硬件上,所有内核共享一条内存总线,因此使用更多线程不会给您带来更多带宽,而且,因为这是瓶颈,加速。如果您减小问题大小使其适合缓存,或者确定增加每个数据的计算次数,这可能会改变,例如,如果您正在计算 exp(vec[i]) 或 1/vec[ 的减少一世]。对于 memset:你可以用一个线程使内存饱和,你永远不会在那里看到加速。 (只有当您可以访问具有更多线程的第二个内存总线时,就像某些多插槽架构一样)。关于减少的一个评论,这很可能不是用锁实现的,那将是非常低效的,但是使用一个没有那么糟糕的对数加速的加法树。
关于c - OpenMP 令人尴尬的并行循环,没有加速,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/25624714/
OpenMP 中的高斯消除。我是 openmp 的新手,想知道我是否在正确的地方使用了我的编译指示和屏障。我的 x 值每次都不同。他们应该是一样的吗?? #include int num; doub
给定一个示例函数(示例在下面给出),for 循环可以使用 OpenMP 并行化或使用矢量化进行矢量化(假设编译器执行矢量化)。 示例 void function(float* a, float* b,
OpenMP 中原子和关键之间有什么区别? 我能做到 #pragma omp atomic g_qCount++; 但这和不一样吗 #pragma omp critical g_qCount++; ?
我有一个关于如何在您考虑特定依赖关系图时生成 OpenMP 伪代码的问题。 所以假设我们有这个特定的图表: 解决方案可能是这样的: #pragma omp parallel {
我正在尝试使用 openmp 计算二维矩阵的平均值。这个二维矩阵实际上是一个图像。 我正在对数据进行线程分割。例如,如果我有 N线程比我处理行/N thread0 的行数, 等等。 我的问题是:我可以
我想统计测量与 OpenMP 并行化的程序的性能。我选择在执行并行算法的测试应用程序中编写循环 MAX_EXPERIMENTS次并将时间测量报告到文件中。 问题解决方案似乎比提取外部循环上方的并行编译
我找到了 Intel's performance suggestion on Xeon Phi关于 OpenMP 中的 Collapse 子句。 #pragma omp parallel for co
如何使用 OpenMP 并行化数组移位? 我尝试了一些方法,但在以下示例中没有得到任何准确的结果(该示例旋转 Carteira 对象数组的元素,用于排列算法): void rotaciona(int
我有一系列对几个独立函数的调用。 func1(arg); func2(arg); func3(arg); 我想并行执行它们,而不是串行执行它们。我目前正在使用 #pragma omp parallel
我正在尝试使用 openmp 任务来安排基本 jacobi2d 计算的平铺执行。在 jacobi2d 中,依赖于 A(i,j) 从 A(i, j) A(i-1, j) A(i+1, j) A(i, j
我在 3 天前开始使用 OpenMP。我想知道如何使用#pragma使每个内核运行一个线程。详细信息:- int ncores = omp_get_num_procs();for(i = 0; i <
我有一段代码(它是应用程序的一部分),我正在尝试使用 OpenMP 对其进行优化,正在尝试各种调度策略。就我而言,我注意到 schedule(RUNTIME)条款比其他条款有优势(我没有指定 chun
我有一个数字运算 C/C++ 应用程序。它基本上是不同数据集的主循环。我们可以使用 openmp 和 mpi 访问一个 100 节点的集群。我想加速应用程序,但我是 mpi 和 openmp 的绝对新
在 OpenMP 中使用ompsections时,线程会被分配到sections内的 block ,还是每个线程会被分配到每个section? 当nthreads == 3时: #pragma omp
我正在尝试在 cython 中使用 openmp。我需要在 cython 中做两件事: i) 在我的 cython 代码中使用 #pragma omp single{} 作用域。 ii) 使用#pra
我正在尝试通过将循环的每次迭代作为 OpenMP 部分来并行化 OpenMP 中基于范围的 for 循环。我想这样做: #pragma omp parallel sections { for ( au
我正在尝试在 cython 中使用 openmp。我需要在 cython 中做两件事: i) 在我的 cython 代码中使用 #pragma omp single{} 作用域。 ii) 使用#pra
我想编写一个代码转换器,它采用基于 OpenMP 的并行程序并在集群上运行它。 我该如何解决这个问题?我使用哪些库?如何为此设置小型集群? 我发现很难在 Internet 上找到有关集群计算的好 Ma
我是 OpenMP 的新手。我正在尝试为 for 循环使用多个内核,但出现此编译错误: “错误 C3016:'x':OpenMP 'for' 语句中的索引变量必须具有带符号的整数类型”。 我知道 Op
如果我使用 VS 2010 编译器从 Qt Creator 构建项目,我如何启用 OpenMP(从 Visual Studio 构建时,您只需启用该功能)谢谢 最佳答案 在 .pro 文件中尝试下一步
我是一名优秀的程序员,十分优秀!