gpt4 book ai didi

python - 使用pcolormesh时如何通过插值平滑?

转载 作者:太空狗 更新时间:2023-10-29 17:19:28 28 4
gpt4 key购买 nike

我有一张世界 basemap ,它使用 pcolormesh 填充了数据 (lintrends_mean)。因为数据有相对较大的网格框,所以我想平滑绘图。但是,我不知道该怎么做。在绘图函数中设置 shading='gouraud' 会模糊网格框的边缘,但我想要比这更好看的东西,因为数据仍然显得有些 Blob 。

这里提出了一个类似的问题并给出了答案,但我不明白答案,尤其是“newdepth”的来源。由于我缺乏声誉,我也无法对此发表评论以进行澄清。 interpolation with matplotlib pcolor

#Set cmap properties
bounds = np.array([0.1,0.2,0.5,1,2,3,4,6,9,13,20,35,50])
norm = colors.LogNorm(vmin=0.01,vmax=55) #creates logarithmic scale
#cmap.set_under('#000099') # I want to use this- edit in Paint
cmap.set_over('#660000') # everything above range of colormap

fig = plt.figure(figsize=(15.,10.)) #create figure & size
m = Basemap(projection='cyl',llcrnrlat=-90,urcrnrlat=90,llcrnrlon=0,urcrnrlon=360.,lon_0=180.,resolution='c') #create basemap & specify data area & res
m.drawcoastlines(linewidth=1)
m.drawcountries(linewidth=1)
m.drawparallels(np.arange(-90,90,30.),linewidth=0.3)
m.drawmeridians(np.arange(-180.,180.,90.),linewidth=0.3)
meshlon,meshlat = np.meshgrid(lon,lat) #meshgrid turns lats & lons into 2D arrays
x,y = m(meshlon,meshlat) #assign 2D arrays to new variables
trend = m.pcolormesh(x,y,lintrends_mean,cmap=plt.get_cmap('jet'),norm=norm) #plot the data & specify colormap & color range
cbar=m.colorbar(trend,size="3%", label='Linear Trend (mm/day/decade)',ticks=bounds,extend="max")
cbar.set_ticklabels(bounds)
plt.title('Linear Trends of PR (CanESM2 1979-2014)',fontsize=16)
plt.xlabel('Longitude',fontsize=10)
plt.ylabel('Latitude',fontsize=10)
plt.show()

enter image description here

最佳答案

你有一些变体:

  1. pcolormesh 使用特殊的阴影。
  2. 使用允许插入数据的imshow
  3. 使用 scipy.interpolate 插入数据并使用 pcolormesh 绘图。

看例子:

import matplotlib.pylab as plt
import numpy as np
from scipy.interpolate import interp2d

data = np.random.random((30,30))
X = np.arange(0, 30, 1)
Y = np.arange(0, 30, 1)
X, Y = np.meshgrid(X, Y)

# colormesh original
plt.subplot(3, 2, 1)
plt.pcolormesh(X, Y, data, cmap='RdBu')

# pcolormesh with special shading
plt.subplot(3, 2, 2)
plt.pcolormesh(X, Y, data, cmap='RdBu',shading='gouraud')

# imshow bilinear interp.
plt.subplot(3, 2, 3)
plt.imshow(data, cmap='RdBu', interpolation = 'bilinear')

# imshow bicubic interp.
plt.subplot(3, 2, 4)
plt.imshow(data, cmap='RdBu', interpolation = 'bicubic')

# scipy interp. cubic
f = interp2d(X, Y, data, kind='cubic')
xnew = np.arange(0, 30, .1)
ynew = np.arange(0, 30, .1)
data1 = f(xnew,ynew)
Xn, Yn = np.meshgrid(xnew, ynew)
plt.subplot(3, 2, 5)
plt.pcolormesh(Xn, Yn, data1, cmap='RdBu')

plt.show()

enter image description here

关于python - 使用pcolormesh时如何通过插值平滑?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/37822925/

28 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com