gpt4 book ai didi

python - sklearn 分类器获取 ValueError : bad input shape

转载 作者:太空狗 更新时间:2023-10-29 17:19:14 27 4
gpt4 key购买 nike

我有一个 csv,结构是CAT1,CAT2,TITLE,URL,CONTENT, CAT1, CAT2, TITLE ,CONTENT 为中文。

我想用 X(TITLE) 和特征 (CAT1,CAT2) 训练 LinearSVCMultinomialNB,两者都会出现此错误。下面是我的代码:

PS:我通过这个例子写了下面的代码scikit-learn text_analytics

import numpy as np
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.pipeline import Pipeline

label_list = []

def label_map_target(label):
''' map chinese feature name to integer '''
try:
idx = label_list.index(label)
except ValueError:
idx = len(label_list)
label_list.append(label)

return idx


c1_list = []
c2_list = []
title_list = []
with open(csv_file, 'r') as f:
# row_from_csv is for shorting this example
for row in row_from_csv(f):
c1_list.append(label_map_target(row[0])
c2_list.append(label_map_target(row[1])
title_list.append(row[2])

data = np.array(title_list)
target = np.array([c1_list, c2_list])
print target.shape
# (2, 4405)
target = target.reshape(4405,2)
print target.shape
# (4405, 2)

docs_train, docs_test, y_train, y_test = train_test_split(
data, target, test_size=0.25, random_state=None)

# vect = TfidfVectorizer(tokenizer=jieba_tokenizer, min_df=3, max_df=0.95)
# use custom chinese tokenizer get same error
vect = TfidfVectorizer(min_df=3, max_df=0.95)
docs_train= vect.fit_transform(docs_train)

clf = LinearSVC()
clf.fit(docs_train, y_train)

错误:

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-24-904eb9af02cd> in <module>()
1 clf = LinearSVC()
----> 2 clf.fit(docs_train, y_train)

C:\Python27\lib\site-packages\sklearn\svm\classes.pyc in fit(self, X, y)
198
199 X, y = check_X_y(X, y, accept_sparse='csr',
--> 200 dtype=np.float64, order="C")
201 self.classes_ = np.unique(y)
202

C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric)
447 dtype=None)
448 else:
--> 449 y = column_or_1d(y, warn=True)
450 _assert_all_finite(y)
451 if y_numeric and y.dtype.kind == 'O':

C:\Python27\lib\site-packages\sklearn\utils\validation.pyc in column_or_1d(y, warn)
483 return np.ravel(y)
484
--> 485 raise ValueError("bad input shape {0}".format(shape))
486
487

ValueError: bad input shape (3303, 2)

最佳答案

感谢@meelo,我解决了这个问题。正如他所说:在我的代码中,data是一个特征向量,target是目标值。我混淆了两件事。

我了解到 TfidfVectorizer 将数据处理为 [data, feature],并且每个数据应该只映射到一个目标。

如果我想预测两种类型的目标,我需要两个不同的目标:

  1. target_C1 所有 C1 值
  2. target_C2 具有所有 C2 值。

然后使用两个目标和原始数据为每个目标训练两个分类器。

关于python - sklearn 分类器获取 ValueError : bad input shape,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/31306390/

27 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com