作者热门文章
- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有一个多类分类问题,我的数据集是倾斜的,我有 100 个特定类的实例,说 10 个不同的类,所以我想在类之间拆分我的数据集保持率,如果我有 100 个实例一个特定的类,我希望 30% 的记录进入训练集中,我希望我的 100 条记录中有 30 个实例代表类,我的 10 条记录中有 3 个实例代表类等等。
最佳答案
您可以使用 sklearn 的 StratifiedKFold
,来自在线文档:
Stratified K-Folds cross validation iterator
Provides train/test indices to split data in train test sets.
This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class.
>>> from sklearn import cross_validation
>>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]])
>>> y = np.array([0, 0, 1, 1])
>>> skf = cross_validation.StratifiedKFold(y, n_folds=2)
>>> len(skf)
2
>>> print(skf)
sklearn.cross_validation.StratifiedKFold(labels=[0 0 1 1], n_folds=2,
shuffle=False, random_state=None)
>>> for train_index, test_index in skf:
... print("TRAIN:", train_index, "TEST:", test_index)
... X_train, X_test = X[train_index], X[test_index]
... y_train, y_test = y[train_index], y[test_index]
TRAIN: [1 3] TEST: [0 2]
TRAIN: [0 2] TEST: [1 3]
这将保留您的类别比率,以便拆分保留类别比率,这将适用于 pandas dfs。
正如@Ali_m 所建议的,您可以使用 StratifiedShuffledSplit
它接受一个分流比参数:
sss = StratifiedShuffleSplit(y, 3, test_size=0.7, random_state=0)
会产生 70% 的拆分。
关于python - 如何将数据集拆分为训练集和验证集以保持类之间的比率?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/29082001/
我是一名优秀的程序员,十分优秀!