gpt4 book ai didi

python - 如何将 VectorAssembler 输出的特征映射回 Spark ML 中的列名?

转载 作者:太空狗 更新时间:2023-10-29 17:16:52 25 4
gpt4 key购买 nike

我正在尝试在 PySpark 中运行线性回归,我想创建一个表,其中包含汇总统计信息,例如数据集中每一列的系数、P 值和 t 值。但是,为了训练线性回归模型,我必须使用 Spark 的 VectorAssembler 创建一个特征向量,现在对于每一行我都有一个特征向量和目标列。当我尝试访问 Spark 的内置回归汇总统计信息时,他们为我提供了每个统计信息的非常原始的数字列表,并且无法知道哪个属性对应于哪个值,这很难手动找出大量的列。如何将这些值映射回列名称?

例如,我的当前输出是这样的:

Coefficients: [-187.807832407,-187.058926726,85.1716641376,10595.3352802,-127.258892837,-39.2827730493,-1206.47228704,33.7078197705,99.9956812528]

P-Value: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.18589731365614548, 0.275173571416679, 0.0]

t-statistic: [-23.348593508995318, -44.72813283953004, 19.836508234714472, 144.49248881747755, -16.547272230754242, -9.560681351483941, -19.563547400189073, 1.3228378389036228, 1.0912415361190977, 20.383256127350474]

Coefficient Standard Errors: [8.043646497811427, 4.182131353367049, 4.293682291754585, 73.32793120907755, 7.690626652102948, 4.108783841348964, 61.669402913526625, 25.481445101737247, 91.63478289909655, 609.7007361468519]

除非我知道它们对应于哪个属性,否则这些数字毫无意义。但是在我的 DataFrame 中,我只有一个名为“features”的列,其中包含多行稀疏向量。

当我有单热编码特征时,这是一个更大的问题,因为如果我有一个编码长度为 n 的变量,我将得到 n 个对应的系数/p 值/t 值等。

最佳答案

截至目前,Spark 并未提供任何可以为您完成此操作的方法,因此如果您必须创建自己的方法。假设您的数据如下所示:

import random
random.seed(1)

df = sc.parallelize([(
random.choice([0.0, 1.0]),
random.choice(["a", "b", "c"]),
random.choice(["foo", "bar"]),
random.randint(0, 100),
random.random(),
) for _ in range(100)]).toDF(["label", "x1", "x2", "x3", "x4"])

并使用以下管道进行处理:

from pyspark.ml.feature import StringIndexer, OneHotEncoder, VectorAssembler
from pyspark.ml import Pipeline
from pyspark.ml.regression import LinearRegression

indexers = [
StringIndexer(inputCol=c, outputCol="{}_idx".format(c)) for c in ["x1", "x2"]]
encoders = [
OneHotEncoder(
inputCol=idx.getOutputCol(),
outputCol="{0}_enc".format(idx.getOutputCol())) for idx in indexers]
assembler = VectorAssembler(
inputCols=[enc.getOutputCol() for enc in encoders] + ["x3", "x4"],
outputCol="features")

pipeline = Pipeline(
stages=indexers + encoders + [assembler, LinearRegression()])
model = pipeline.fit(df)

获取LinearRegressionModel:

lrm = model.stages[-1]

转换数据:

transformed =  model.transform(df)

提取并展平 ML 属性:

from itertools import chain

attrs = sorted(
(attr["idx"], attr["name"]) for attr in (chain(*transformed
.schema[lrm.summary.featuresCol]
.metadata["ml_attr"]["attrs"].values())))

并映射到输出:

[(name, lrm.summary.pValues[idx]) for idx, name in attrs]
[('x1_idx_enc_a', 0.26400012641279824),
('x1_idx_enc_c', 0.06320192217171572),
('x2_idx_enc_foo', 0.40447778902400433),
('x3', 0.1081883594783335),
('x4', 0.4545851609776568)]
[(name, lrm.coefficients[idx]) for idx, name in attrs]
[('x1_idx_enc_a', 0.13874401585637453),
('x1_idx_enc_c', 0.23498565469334595),
('x2_idx_enc_foo', -0.083558932128022873),
('x3', 0.0030186112903237442),
('x4', -0.12951394186593695)]

关于python - 如何将 VectorAssembler 输出的特征映射回 Spark ML 中的列名?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/42935914/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com