gpt4 book ai didi

python - 如何在 Python 中使用 OpenCV 跟踪运动?

转载 作者:太空狗 更新时间:2023-10-29 17:11:29 26 4
gpt4 key购买 nike

我可以使用 OpenCV 从我的网络摄像头获取帧在 Python 中。 camshift 示例接近我想要的,但我不希望人为干预来定义对象。我想获得在几帧过程中发生变化的总像素的中心点,即移动物体的中心。

最佳答案

我已经从 C 翻译了一些工作代码在博文 Motion Detection using OpenCV 中找到的代码版本:

#!/usr/bin/env python

import cv

class Target:

def __init__(self):
self.capture = cv.CaptureFromCAM(0)
cv.NamedWindow("Target", 1)

def run(self):
# Capture first frame to get size
frame = cv.QueryFrame(self.capture)
frame_size = cv.GetSize(frame)
color_image = cv.CreateImage(cv.GetSize(frame), 8, 3)
grey_image = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_8U, 1)
moving_average = cv.CreateImage(cv.GetSize(frame), cv.IPL_DEPTH_32F, 3)

first = True

while True:
closest_to_left = cv.GetSize(frame)[0]
closest_to_right = cv.GetSize(frame)[1]

color_image = cv.QueryFrame(self.capture)

# Smooth to get rid of false positives
cv.Smooth(color_image, color_image, cv.CV_GAUSSIAN, 3, 0)

if first:
difference = cv.CloneImage(color_image)
temp = cv.CloneImage(color_image)
cv.ConvertScale(color_image, moving_average, 1.0, 0.0)
first = False
else:
cv.RunningAvg(color_image, moving_average, 0.020, None)

# Convert the scale of the moving average.
cv.ConvertScale(moving_average, temp, 1.0, 0.0)

# Minus the current frame from the moving average.
cv.AbsDiff(color_image, temp, difference)

# Convert the image to grayscale.
cv.CvtColor(difference, grey_image, cv.CV_RGB2GRAY)

# Convert the image to black and white.
cv.Threshold(grey_image, grey_image, 70, 255, cv.CV_THRESH_BINARY)

# Dilate and erode to get people blobs
cv.Dilate(grey_image, grey_image, None, 18)
cv.Erode(grey_image, grey_image, None, 10)

storage = cv.CreateMemStorage(0)
contour = cv.FindContours(grey_image, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
points = []

while contour:
bound_rect = cv.BoundingRect(list(contour))
contour = contour.h_next()

pt1 = (bound_rect[0], bound_rect[1])
pt2 = (bound_rect[0] + bound_rect[2], bound_rect[1] + bound_rect[3])
points.append(pt1)
points.append(pt2)
cv.Rectangle(color_image, pt1, pt2, cv.CV_RGB(255,0,0), 1)

if len(points):
center_point = reduce(lambda a, b: ((a[0] + b[0]) / 2, (a[1] + b[1]) / 2), points)
cv.Circle(color_image, center_point, 40, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 30, cv.CV_RGB(255, 100, 0), 1)
cv.Circle(color_image, center_point, 20, cv.CV_RGB(255, 255, 255), 1)
cv.Circle(color_image, center_point, 10, cv.CV_RGB(255, 100, 0), 1)

cv.ShowImage("Target", color_image)

# Listen for ESC key
c = cv.WaitKey(7) % 0x100
if c == 27:
break

if __name__=="__main__":
t = Target()
t.run()

关于python - 如何在 Python 中使用 OpenCV 跟踪运动?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/3374828/

26 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com