- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在使用 tensorflow 1.10 Python 3.6
我的代码基于预制的 iris classification model由 TensorFlow 提供。这意味着,我使用的是 Tensorflow DNN 预制分类器,具有以下区别:
测试和训练文件可以从以下链接下载: https://www.dropbox.com/sh/nmu8i2i8xe6hvfq/AADQEOIHH8e-kUHQf8zmmDMDa?dl=0
我编写了一个代码将这个分类器导出为 tflite 格式,但是 python 模型中的准确度高于 75%,但是当导出时准确度大约下降到 45%,这意味着大约 30% 的准确度丢失(这是太多了)。我已经尝试过使用不同数据集的代码,并且在所有这些代码中,导出后的准确性都下降了很多!这让我觉得 TocoConverter 函数出了点问题,或者我可能错误地导出到 tflite,缺少参数或类似的东西。
这是我生成模型的方式:
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
hidden_units=[100, 500],
optimizer=tf.train.AdagradOptimizer(learning_rate=0.003),
n_classes=num_labels,
model_dir="myModel")
这是我用来转换为 tflite 的函数:
converter = tf.contrib.lite.TocoConverter.from_frozen_graph(final_model_path, input_arrays, output_arrays, input_shapes={"dnn/input_from_feature_columns/input_layer/concat": [1, 10]})
tflite_model = converter.convert()
我分享了完整的代码,其中我还计算了生成的 .tflite 文件的准确性。
import argparse
import tensorflow as tf
import pandas as pd
import csv
from tensorflow.python.tools import freeze_graph
from tensorflow.python.tools import optimize_for_inference_lib
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', default=100, type=int, help='batch size')
parser.add_argument('--train_steps', default=1000, type=int,
help='number of training steps')
features_global = None
feature_spec = None
MODEL_NAME = 'myModel'
def load_data(train_path, test_path):
"""Returns the iris dataset as (train_x, train_y), (test_x, test_y)."""
with open(train_path, newline='') as f:
reader = csv.reader(f)
column_names = next(reader)
y_name = column_names[-1]
train = pd.read_csv(train_path, names=column_names, header=0)
train_x, train_y = train, train.pop(y_name)
test = pd.read_csv(test_path, names=column_names, header=0)
test_x, test_y = test, test.pop(y_name)
return (train_x, train_y), (test_x, test_y)
def train_input_fn(features, labels, batch_size):
"""An input function for training"""
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices((dict(features), labels))
# Shuffle, repeat, and batch the examples.
dataset = dataset.shuffle(1000).repeat().batch(batch_size)
# Return the dataset.
return dataset
def eval_input_fn(features, labels, batch_size):
"""An input function for evaluation or prediction"""
features=dict(features)
if labels is None:
# No labels, use only features.
inputs = features
else:
inputs = (features, labels)
# Convert the inputs to a Dataset.
dataset = tf.data.Dataset.from_tensor_slices(inputs)
# Batch the examples
assert batch_size is not None, "batch_size must not be None"
dataset = dataset.batch(batch_size)
# Return the dataset.
return dataset
def main(argv):
args = parser.parse_args(argv[1:])
train_path = "trainData.csv"
test_path = "testData.csv"
# Fetch the data
(train_x, train_y), (test_x, test_y) = load_data(train_path, test_path)
# Load labels
num_labels = 5
# Feature columns describe how to use the input.
my_feature_columns = []
for key in train_x.keys():
my_feature_columns.append(tf.feature_column.numeric_column(key=key))
# Build 2 hidden layer DNN
classifier = tf.estimator.DNNClassifier(
feature_columns=my_feature_columns,
hidden_units=[100, 500],
optimizer=tf.train.AdagradOptimizer(learning_rate=0.003),
# The model must choose between 'num_labels' classes.
n_classes=num_labels,
model_dir="myModel")
# Train the Model
classifier.train(
input_fn=lambda:train_input_fn(train_x, train_y,
args.batch_size),
steps=args.train_steps)
# Evaluate the model.
eval_result = classifier.evaluate(
input_fn=lambda:eval_input_fn(test_x, test_y,
args.batch_size))
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
# Export model
feature_spec = tf.feature_column.make_parse_example_spec(my_feature_columns)
serve_input_fun = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
saved_model_path = classifier.export_savedmodel(
export_dir_base="out",
serving_input_receiver_fn=serve_input_fun,
as_text=True,
checkpoint_path=classifier.latest_checkpoint(),
)
tf.reset_default_graph()
var = tf.Variable(0)
with tf.Session() as sess:
# First let's load meta graph and restore weights
sess.run(tf.global_variables_initializer())
latest_checkpoint_path = classifier.latest_checkpoint()
saver = tf.train.import_meta_graph(latest_checkpoint_path + '.meta')
saver.restore(sess, latest_checkpoint_path)
input_arrays = ["dnn/input_from_feature_columns/input_layer/concat"]
output_arrays = ["dnn/logits/BiasAdd"]
frozen_graph_def = tf.graph_util.convert_variables_to_constants(
sess, sess.graph_def,
output_node_names=["dnn/logits/BiasAdd"])
frozen_graph = "out/frozen_graph.pb"
with tf.gfile.FastGFile(frozen_graph, "wb") as f:
f.write(frozen_graph_def.SerializeToString())
# save original graphdef to text file
with open("estimator_graph.pbtxt", "w") as fp:
fp.write(str(sess.graph_def))
# save frozen graph def to text file
with open("estimator_frozen_graph.pbtxt", "w") as fp:
fp.write(str(frozen_graph_def))
input_node_names = input_arrays
output_node_name = output_arrays
output_graph_def = optimize_for_inference_lib.optimize_for_inference(
frozen_graph_def, input_node_names, output_node_name,
tf.float32.as_datatype_enum)
final_model_path = 'out/opt_' + MODEL_NAME + '.pb'
with tf.gfile.FastGFile(final_model_path, "wb") as f:
f.write(output_graph_def.SerializeToString())
tflite_file = "out/iris.tflite"
converter = tf.contrib.lite.TocoConverter.from_frozen_graph(final_model_path, input_arrays, output_arrays, input_shapes={"dnn/input_from_feature_columns/input_layer/concat": [1, 10]})
tflite_model = converter.convert()
open(tflite_file, "wb").write(tflite_model)
interpreter = tf.contrib.lite.Interpreter(model_path=tflite_file)
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Test model on random input data.
input_shape = input_details[0]['shape']
# change the following line to feed into your own data.
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
resultlist = list()
df = pd.read_csv(test_path)
expected = df.iloc[:, -1].values.tolist()
with open(test_path, newline='') as f:
reader = csv.reader(f)
column_names = next(reader)
for x in range(0, len(expected)):
linea = next(reader)
linea = linea[:len(linea) - 1]
input_data2 = np.array(linea, dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], [input_data2])
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
#print(output_data)
max = 0;
longitud = len(output_data[0])
for k in range(0, longitud):
if (output_data[0][k] > output_data[0][max]):
max = k
resultlist.append(max)
print(resultlist)
coincidences = 0
for pred_dict, expec in zip(resultlist, expected):
if pred_dict == expec:
coincidences = coincidences + 1
print("tflite Accuracy: " + str(coincidences / len(expected)))
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
我希望你们中的一些人能够找出错误,或者给出一个可能的解决方案
最佳答案
这个问题得到了回答here可能有帮助。
在回答分享中提到,做一些
pre-processing
在将图像送入“interpreter.invoke()”之前在图像上解决问题(如果这是首先出现的问题)。
为了详细说明这里是来自共享链接的 block 引用:
The below code you see is what I meant by pre-processing:
test_image = cv2.imread(file_name)
test_image = cv2.resize(test_image,(299,299),cv2.INTER_AREA)
test_image = np.expand_dims((test_image)/255,axis=0).astype(np.float32)
interpreter.set_tensor(input_tensor_index, test_image)
interpreter.invoke()
digit = np.argmax(output()[0])
#print(digit)
prediction = result[digit]
As you can see there are two crucial commands/pre-processing done on the image once it is read using "imread()":
i) The image should be resized to the size that is the "input_height" and "input_width" values of the input image/tensor that was used during the training. In my case (inception-v3) this was 299 for both "input_height" and "input_width". (Read the documentation of the model for this value or look for this variable in the file that you used to train or retrain the model)
ii) The next command in the above code is:
test_image = np.expand_dims((test_image)/255,axis=0).astype(np.float32)
I got this from the "formulae"/model code:
test_image = np.expand_dims((test_image - input_mean)/input_std, axis=0).astype(np.float32)
Reading the documentation revealed that for my architecture input_mean = 0 and input_std = 255.
希望这对您有所帮助。
关于python - 与 python 模型相比,tensorflow lite 模型给出了非常不同的精度值,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/52057552/
我正在处理一组标记为 160 个组的 173k 点。我想通过合并最接近的(到 9 或 10 个组)来减少组/集群的数量。我搜索过 sklearn 或类似的库,但没有成功。 我猜它只是通过 knn 聚类
我有一个扁平数字列表,这些数字逻辑上以 3 为一组,其中每个三元组是 (number, __ignored, flag[0 or 1]),例如: [7,56,1, 8,0,0, 2,0,0, 6,1,
我正在使用 pipenv 来管理我的包。我想编写一个 python 脚本来调用另一个使用不同虚拟环境(VE)的 python 脚本。 如何运行使用 VE1 的 python 脚本 1 并调用另一个 p
假设我有一个文件 script.py 位于 path = "foo/bar/script.py"。我正在寻找一种在 Python 中通过函数 execute_script() 从我的主要 Python
这听起来像是谜语或笑话,但实际上我还没有找到这个问题的答案。 问题到底是什么? 我想运行 2 个脚本。在第一个脚本中,我调用另一个脚本,但我希望它们继续并行,而不是在两个单独的线程中。主要是我不希望第
我有一个带有 python 2.5.5 的软件。我想发送一个命令,该命令将在 python 2.7.5 中启动一个脚本,然后继续执行该脚本。 我试过用 #!python2.7.5 和http://re
我在 python 命令行(使用 python 2.7)中,并尝试运行 Python 脚本。我的操作系统是 Windows 7。我已将我的目录设置为包含我所有脚本的文件夹,使用: os.chdir("
剧透:部分解决(见最后)。 以下是使用 Python 嵌入的代码示例: #include int main(int argc, char** argv) { Py_SetPythonHome
假设我有以下列表,对应于及时的股票价格: prices = [1, 3, 7, 10, 9, 8, 5, 3, 6, 8, 12, 9, 6, 10, 13, 8, 4, 11] 我想确定以下总体上最
所以我试图在选择某个单选按钮时更改此框架的背景。 我的框架位于一个类中,并且单选按钮的功能位于该类之外。 (这样我就可以在所有其他框架上调用它们。) 问题是每当我选择单选按钮时都会出现以下错误: co
我正在尝试将字符串与 python 中的正则表达式进行比较,如下所示, #!/usr/bin/env python3 import re str1 = "Expecting property name
考虑以下原型(prototype) Boost.Python 模块,该模块从单独的 C++ 头文件中引入类“D”。 /* file: a/b.cpp */ BOOST_PYTHON_MODULE(c)
如何编写一个程序来“识别函数调用的行号?” python 检查模块提供了定位行号的选项,但是, def di(): return inspect.currentframe().f_back.f_l
我已经使用 macports 安装了 Python 2.7,并且由于我的 $PATH 变量,这就是我输入 $ python 时得到的变量。然而,virtualenv 默认使用 Python 2.6,除
我只想问如何加快 python 上的 re.search 速度。 我有一个很长的字符串行,长度为 176861(即带有一些符号的字母数字字符),我使用此函数测试了该行以进行研究: def getExe
list1= [u'%app%%General%%Council%', u'%people%', u'%people%%Regional%%Council%%Mandate%', u'%ppp%%Ge
这个问题在这里已经有了答案: Is it Pythonic to use list comprehensions for just side effects? (7 个答案) 关闭 4 个月前。 告
我想用 Python 将两个列表组合成一个列表,方法如下: a = [1,1,1,2,2,2,3,3,3,3] b= ["Sun", "is", "bright", "June","and" ,"Ju
我正在运行带有最新 Boost 发行版 (1.55.0) 的 Mac OS X 10.8.4 (Darwin 12.4.0)。我正在按照说明 here构建包含在我的发行版中的教程 Boost-Pyth
学习 Python,我正在尝试制作一个没有任何第 3 方库的网络抓取工具,这样过程对我来说并没有简化,而且我知道我在做什么。我浏览了一些在线资源,但所有这些都让我对某些事情感到困惑。 html 看起来
我是一名优秀的程序员,十分优秀!