gpt4 book ai didi

python - Python 2.x 中两个图像的直方图匹配?

转载 作者:太空狗 更新时间:2023-10-29 16:59:06 25 4
gpt4 key购买 nike

我正在尝试匹配两个图像的直方图(在 MATLAB 中这可以使用 imhistmatch 来完成)。标准 Python 库中是否有可用的等效函数?我看过 OpenCV、scipy 和 numpy,但没有看到任何类似的功能。

最佳答案

我之前写过一个答案here解释如何对图像直方图进行分段线性插值,以强制执行特定比例的高光/中间调/阴影。

相同的基本原则是 histogram matching 的基础在两个图像之间。本质上,您计算源图像和模板图像的累积直方图,然后进行线性插值以找到模板图像中与源图像中唯一像素值的分位数最匹配的唯一像素值:

import numpy as np

def hist_match(source, template):
"""
Adjust the pixel values of a grayscale image such that its histogram
matches that of a target image

Arguments:
-----------
source: np.ndarray
Image to transform; the histogram is computed over the flattened
array
template: np.ndarray
Template image; can have different dimensions to source
Returns:
-----------
matched: np.ndarray
The transformed output image
"""

oldshape = source.shape
source = source.ravel()
template = template.ravel()

# get the set of unique pixel values and their corresponding indices and
# counts
s_values, bin_idx, s_counts = np.unique(source, return_inverse=True,
return_counts=True)
t_values, t_counts = np.unique(template, return_counts=True)

# take the cumsum of the counts and normalize by the number of pixels to
# get the empirical cumulative distribution functions for the source and
# template images (maps pixel value --> quantile)
s_quantiles = np.cumsum(s_counts).astype(np.float64)
s_quantiles /= s_quantiles[-1]
t_quantiles = np.cumsum(t_counts).astype(np.float64)
t_quantiles /= t_quantiles[-1]

# interpolate linearly to find the pixel values in the template image
# that correspond most closely to the quantiles in the source image
interp_t_values = np.interp(s_quantiles, t_quantiles, t_values)

return interp_t_values[bin_idx].reshape(oldshape)

例如:

from matplotlib import pyplot as plt
from scipy.misc import lena, ascent

source = lena()
template = ascent()
matched = hist_match(source, template)

def ecdf(x):
"""convenience function for computing the empirical CDF"""
vals, counts = np.unique(x, return_counts=True)
ecdf = np.cumsum(counts).astype(np.float64)
ecdf /= ecdf[-1]
return vals, ecdf

x1, y1 = ecdf(source.ravel())
x2, y2 = ecdf(template.ravel())
x3, y3 = ecdf(matched.ravel())

fig = plt.figure()
gs = plt.GridSpec(2, 3)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1], sharex=ax1, sharey=ax1)
ax3 = fig.add_subplot(gs[0, 2], sharex=ax1, sharey=ax1)
ax4 = fig.add_subplot(gs[1, :])
for aa in (ax1, ax2, ax3):
aa.set_axis_off()

ax1.imshow(source, cmap=plt.cm.gray)
ax1.set_title('Source')
ax2.imshow(template, cmap=plt.cm.gray)
ax2.set_title('template')
ax3.imshow(matched, cmap=plt.cm.gray)
ax3.set_title('Matched')

ax4.plot(x1, y1 * 100, '-r', lw=3, label='Source')
ax4.plot(x2, y2 * 100, '-k', lw=3, label='Template')
ax4.plot(x3, y3 * 100, '--r', lw=3, label='Matched')
ax4.set_xlim(x1[0], x1[-1])
ax4.set_xlabel('Pixel value')
ax4.set_ylabel('Cumulative %')
ax4.legend(loc=5)

enter image description here

对于一对 RGB 图像,您可以将此函数分别应用于每个 channel 。根据您要达到的效果,您可能希望先将图像转换为不同的色彩空间。例如,您可以转换为 HSV space然后,如果您想匹配亮度而不是色调或饱和度,则仅在 V channel 上进行匹配。

关于python - Python 2.x 中两个图像的直方图匹配?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/32655686/

25 4 0
Copyright 2021 - 2024 cfsdn All Rights Reserved 蜀ICP备2022000587号
广告合作:1813099741@qq.com 6ren.com