- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我通常使用以下包来创建我的绘图:matplotlib.pylab
。但是,还有一个名为 matplotlib.pyplot
的包。
我在使用它们时无法发现两者之间的任何区别。所以我的问题如下:
包 matplotlib.pylab
和 matplotlib.pyplot
有什么区别。在哪些情况下,您会建议一个而不是另一个?
最佳答案
根据 the FAQ :
Pyplot provides the state-machine interface to the underlying plotting library in matplotlib. This means that figures and axes are implicitly and automatically created to achieve the desired plot....
Pylab combines the pyplot functionality (for plotting) with the numpy functionality (for mathematics and for working with arrays) in a single namespace, making that namespace (or environment) even more MATLAB-like. For example, one can call the sin and cos functions just like you could in MATLAB, as well as having all the features of pyplot.
The pyplot interface is generally preferred for non-interactive plotting (i.e., scripting). The pylab interface is convenient for interactive calculations and plotting, as it minimizes typing. (my emphasis.)
注意
from pylab import *
还执行
from numpy import *
这会覆盖许多内置的 Python 函数,例如:
In [5]: import __builtin__
In [6]: import numpy as np
In [5]: {name for name in set(dir(np)).intersection(dir(__builtin__)) if not name.startswith('__') and getattr(__builtin__, name) != getattr(np, name)}
Out[5]: {'abs', 'all', 'any', 'max', 'min', 'round', 'sum'}
因此,我不喜欢 from pylab import *
(或者真的 from module import *
任何模块),因为它让众所周知的心爱的 Python 名称表现在意想不到的方式(如果你不总是记住 from numpy import *
已经污染了全局命名空间。)
例如,
In [32]: np.all([np.arange(3), np.arange(3)])
Out[32]: False
同时
In [33]: all([np.arange(3), np.arange(3)])
ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()
关于python - matplotlib.pyplot 与 matplotlib.pylab,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/23451028/
从 matplotlib 库中我导入了 pyplot 模块。在该模块中有一个我使用过的函数plot()。现在我的问题是: 为什么plot()函数不在任何类中?如果它在任何类中,为什么我们不创建该类的任
过去我可以使用带有 for 循环的 matplotlib 来制作简单的动画,但现在已经有一段时间没用了。 标准答案是您必须打开交互模式和/或使用matplotlib.pyplot.draw()强制重绘
我正在为一个研究项目绘制一些天气数据。该图由 18 个时间步组成。我认为实现此目的的最佳方法是为每个时间步长创建一个新图,将其保存为文件,然后为下一个时间步长创建一个新图(使用 for 循环)。 例如
from matplotlib import pyplot as plt import matplotlib.pyplot as plt 以上说法是否等价?哪种形式更具可读性/更好? 最佳答案 尽管它
我希望负条朝下,正条朝上,x轴(0线)正好在它们之间通过。我试过了 chart = fig.bar(x, negative_data, width=35, color='r') ax2 = plt.g
所以我想要的是让我的 pyplot 以科学记数法记号。所以每个刻度看起来像 1x10^6 而不是 1,然后是轴上的 10^6。到目前为止,我能够做到这一点的唯一方法是手动将每个刻度标签设置为 r'$1
我正在尝试针对 datetime 的列表绘制一些数据pyplot 在 x 轴上的对象。然而,日期显示为标准格式,即 %Y-%m-%d %H:%M:%S (太长了)。我可以通过使用 strftime 创
假设我有这个代码: num_rows = 10 num_cols = 1 fig, axs = plt.subplots(num_rows, num_cols, sharex=True) for i
我正在尝试绘制带有拟合虚线的散点图。 plt.scatter(x, y, s=z, alpha=0.5) m, b = np.polyfit(x, y, 1) y = [(m*i) + b for i
我想在 pyplot 图形中包含一些文本,并且能够在不改变比例的情况下放大它。请参阅下面的情节示例、我希望发生的事情以及实际发生的事情。 重现错误的代码: import matplotlib.pypl
我想显示第一次显示时放大的图像,但仍然可以使用图形工具栏中的交互式“重置原始 View ”按钮缩小到全比例。裁剪是完全 Not Acceptable 。使用 plt.axis([x0, x1, y0,
我正在尝试绘制带有拟合虚线的散点图。 plt.scatter(x, y, s=z, alpha=0.5) m, b = np.polyfit(x, y, 1) y = [(m*i) + b for i
我想在 pyplot 图形中包含一些文本,并且能够在不改变比例的情况下放大它。请参阅下面的情节示例、我希望发生的事情以及实际发生的事情。 重现错误的代码: import matplotlib.pypl
我正在编写一门类(class),以便制作符合我的多种需求的情节人物!我特别关注每个 pyplot 用户都知道的线型的循环(颜色和线型),有 4 种线型('-'、'--'、'-.'、':')但有一个选项
我特别想让其中一行比另一行早结束。它们是按时间顺序排列的(逐月和逐年)。 months= [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] pass_2015 = [0
给定一个简单的负值列表:l = [0, -1, -1, -1, -10, -100] 使用标准方法 plt.hist(l) 可视化直方图的最快方法是什么? 我希望能够查看列表中的所有条目及其相对频率。
我有一个包含数据的文件,我将其分为三类。我想显示三个不同的“垃圾箱”,它们都只显示一个数字(该类别的平均值)。 import csv import matplotlib.pyplot as plt i
我不确定我的措辞是否正确,但我想做的是创建两个子图的图形,其中两个图有不同的限制,但它们的大小使得物理比例(如,y -人物高度每厘米的距离)是相同的。为了澄清起见,假设子图 1 显示从 -3 到 3
有谁知道为什么这段代码不能正确绘制框颜色。我希望每个组件都有不同的颜色,但它们都是黑色的,带有蓝色图例。 from numpy import array, zeros import matplotli
我在尝试使用 pyplot 标记数据时遇到了一场噩梦。 我目前正在绘制所有数据,如下所示:plt.plot(data)。 data 是一个数组,其中有一列是总成本,其他列是子成本 我想添加图例并适本地
我是一名优秀的程序员,十分优秀!