- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
假设一个通用的滑动算法在内核上执行一些函数,例如图像处理中的均值滤波器(average-filter)或绝对差求和算法。当内核滑动到下一个位置时,将会有一些内存的冗余读取,因为新内核所包含的数据会与之前的数据有所重叠。
让我用一个实际的例子来解释......假设你想对一个内核(窗口)大小为 3x3 的大型二维矩阵执行中值滤波。内核的第一个位置(下图中的红色)将以 (1,1) 为中心,第二个位置(绿色)将以 (1,2) 为中心。请注意黄色区域是如何重叠的,现在需要从内存中重新加载这些值。
我的具体问题是 3D 均值滤波器,因此重叠更大(3D 为 3^3-3^2 = 18,2D 为 3^2-3 = 6)。
我确定这是一个常见问题...有谁知道如何有效地实现此类算法以消除冗余内存查找,或利用现代架构(例如, 2 路关联缓存)?
我在 3D 中的特定问题仅采用最近的 6 个邻居(不是对角线邻居)的平均值,并在 C 中实现如下:
for( i = 0; i <= maxi; i++ ) {
for( j = 0; j <= maxj; j++ ) {
for( k = 0; k <= maxk; k++ ) {
filteredData[ i ][ j ][ k ] =
ONE_SIXTH *
(
data[ i + 1 ][ j ][ k ] +
data[ i - 1 ][ j ][ k ] +
data[ i ][ j + 1 ][ k ] +
data[ i ][ j - 1 ][ k ] +
data[ i ][ j ][ k + 1 ] +
data[ i ][ j ][ k - 1 ]
);
}
}
}
最佳答案
您所做的称为<strong>卷积。您将多维数据与维数相同的较小内核进行卷积。这是一项非常常见的任务,并且有大量的库可用于此任务。
快速解决方案 ( depending on the kernel size ) 是计算频域中的卷积。您计算数据和内核的(多维)FFT,将它们相乘,然后计算逆 FFT。您会发现经过优化的库可以做到这一点,例如。对于 Python 有 scipy.ndimage.filters.convolve和 scipy.signal.fftconvolve .
平铺 是一种常用的图像处理技术,用于优化低级内存访问。您分配适合 CPU 缓存的正方形图 block (或立方体)。当您访问相邻像素时,它们大多数时候会在内存中靠近在一起。不过,遍历整个数组有点棘手。
为了进一步阅读,我推荐论文 Why Modern CPUs Are Starving and What Can Be Done about It ,其中提到了这种内存阻塞技术,并指向实现它的数字库。
最后是 Integral Image,它允许您 calculate the average任意矩形/长方体的内存访问次数非常少。
关于c - 最小化冗余内存负载的高效二维均值滤波器实现?,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/5923696/
我在具有 2CPU 和 3.75GB 内存 (https://aws.amazon.com/ec2/instance-types/) 的 c3.large Amazon EC2 ubuntu 机器上运
我想通过用户空间中的mmap-ing并将地址发送到内核空间从用户空间写入VGA内存(视频内存,而不是缓冲区),我将使用pfn remap将这些mmap-ed地址映射到vga内存(我将通过 lspci
在 Mathematica 中,如果你想让一个函数记住它的值,它在语法上是很轻松的。例如,这是标准示例 - 斐波那契: fib[1] = 1 fib[2] = 1 fib[n_]:= fib[n] =
我读到动态内存是在运行时在堆上分配的,而静态内存是在编译时在堆栈上分配的,因为编译器知道在编译时必须分配多少内存。 考虑以下代码: int n; cin>>n; int a[n]; 如果仅在运行期间读
我是 Python 的新手,但我之前还不知道这一点。我在 for 循环中有一个基本程序,它从站点请求数据并将其保存到文本文件但是当我检查我的任务管理器时,我发现内存使用量只增加了?长时间运行时,这对我
我正在设计一组数学函数并在 CPU 和 GPU(使用 CUDA)版本中实现它们。 其中一些函数基于查找表。大多数表占用 4KB,其中一些占用更多。基于查找表的函数接受一个输入,选择查找表的一两个条目,
读入一个文件,内存被动态分配给一个字符串,文件内容将被放置在这里。这是在函数内部完成的,字符串作为 char **str 传递。 使用 gdb 我发现在行 **(str+i) = fgetc(aFil
我需要证实一个理论。我正在学习 JSP/Java。 在查看了一个现有的应用程序(我没有写)之后,我注意到一些我认为导致我们的性能问题的东西。或者至少是其中的一部分。 它是这样工作的: 1)用户打开搜索
n我想使用memoization缓存某些昂贵操作的结果,这样就不会一遍又一遍地计算它们。 两个memoise和 R.cache适合我的需要。但是,我发现缓存在调用之间并不可靠。 这是一个演示我看到的问
我目前正在分析一些 javascript shell 代码。这是该脚本中的一行: function having() { memory = memory; setTimeout("F0
我有一种情况,我想一次查询数据库,然后再将整个数据缓存在内存中。 我得到了内存中 Elasticsearch 的建议,我用谷歌搜索了它是什么,以及如何在自己的 spring boot 应用程序中实现它
我正在研究 Project Euler (http://projecteuler.net/problem=14) 的第 14 题。我正在尝试使用内存功能,以便将给定数字的序列长度保存为部分结果。我正在
所以,我一直在做 Java 内存/注意力游戏作业。我还没有达到我想要的程度,它只完成了一半,但我确实让 GUI 大部分工作了......直到我尝试向我的框架添加单选按钮。我认为问题可能是因为我将 JF
我一直在尝试使用 Flask-Cache 的 memoize 功能来仅返回 statusTS() 的缓存结果,除非在另一个请求中满足特定条件,然后删除缓存。 但它并没有被删除,并且 Jinja 模板仍
我对如何使用 & 运算符来减少内存感到非常困惑。 我可以回答下面的问题吗? clase C{ function B(&$a){ $this->a = &$a; $thi
在编写代码时,我遇到了一个有趣的问题。 我有一个 PersonPOJO,其 name 作为其 String 成员之一及其 getter 和 setter class PersonPOJO { priv
在此代码中 public class Base { int length, breadth, height; Base(int l, int b, int h) { l
Definition Structure padding is the process of aligning data members of the structure in accordance
在 JavaScript Ninja 的 secret 中,作者提出了以下方案,用于在没有闭包的情况下内存函数结果。他们通过利用函数是对象这一事实并在函数上定义一个属性来存储过去调用函数的结果来实现这
我正在尝试找出 map 消耗的 RAM 量。所以,我做了以下事情;- Map cr = crPair.collectAsMap(); // 200+ entries System.out.printl
我是一名优秀的程序员,十分优秀!