- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我正在努力理解 scipy.signal.deconvolve
.
从数学的角度来看,卷积只是傅立叶空间中的乘法,所以我期望对于两个函数 f
和 g
:反卷积(卷积(f,g),g)== f
在 numpy/scipy 中,情况并非如此,或者我遗漏了重要的一点。尽管已经有一些与 SO 上的反卷积相关的问题(如 here 和 here),但它们并未解决这一点,其他问题仍不清楚(this)或未得到解答(here)。 SignalProcessing SE 上还有两个问题(this 和 this),其答案对理解 scipy 的反卷积函数的工作原理没有帮助。
问题是:
f
,假设你知道卷积函数 g.?Deconvolve(Convolve(f,g) , g) == f
如何转换为 numpy/scipy?编辑:请注意,这个问题的目的不是为了防止数值不准确(尽管这也是一个 open question),而是为了理解卷积/反卷积在 scipy 中如何协同工作。
以下代码尝试使用 Heaviside 函数和高斯滤波器来实现。从图中可以看出,卷积反卷积的结果并不在所有原始的 Heaviside 函数。如果有人能阐明这个问题,我会很高兴。
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
# Define heaviside function
H = lambda x: 0.5 * (np.sign(x) + 1.)
#define gaussian
gauss = lambda x, sig: np.exp(-( x/float(sig))**2 )
X = np.linspace(-5, 30, num=3501)
X2 = np.linspace(-5,5, num=1001)
# convolute a heaviside with a gaussian
H_c = np.convolve( H(X), gauss(X2, 1), mode="same" )
# deconvolute a the result
H_dc, er = scipy.signal.deconvolve(H_c, gauss(X2, 1) )
#### Plot ####
fig , ax = plt.subplots(nrows=4, figsize=(6,7))
ax[0].plot( H(X), color="#907700", label="Heaviside", lw=3 )
ax[1].plot( gauss(X2, 1), color="#907700", label="Gauss filter", lw=3 )
ax[2].plot( H_c/H_c.max(), color="#325cab", label="convoluted" , lw=3 )
ax[3].plot( H_dc, color="#ab4232", label="deconvoluted", lw=3 )
for i in range(len(ax)):
ax[i].set_xlim([0, len(X)])
ax[i].set_ylim([-0.07, 1.2])
ax[i].legend(loc=4)
plt.show()
编辑:注意有一个matlab example ,展示了如何使用
对矩形信号进行卷积/反卷积yc=conv(y,c,'full')./sum(c);
ydc=deconv(yc,c).*sum(c);
本着这个问题的精神,如果有人能够将这个示例翻译成 python,它也会有所帮助。
最佳答案
经过反复试验,我发现了如何解释 scipy.signal.deconvolve()
的结果,并将我的发现作为答案发布。
让我们从一个工作示例代码开始
import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
# let the signal be box-like
signal = np.repeat([0., 1., 0.], 100)
# and use a gaussian filter
# the filter should be shorter than the signal
# the filter should be such that it's much bigger then zero everywhere
gauss = np.exp(-( (np.linspace(0,50)-25.)/float(12))**2 )
print gauss.min() # = 0.013 >> 0
# calculate the convolution (np.convolve and scipy.signal.convolve identical)
# the keywordargument mode="same" ensures that the convolution spans the same
# shape as the input array.
#filtered = scipy.signal.convolve(signal, gauss, mode='same')
filtered = np.convolve(signal, gauss, mode='same')
deconv, _ = scipy.signal.deconvolve( filtered, gauss )
#the deconvolution has n = len(signal) - len(gauss) + 1 points
n = len(signal)-len(gauss)+1
# so we need to expand it by
s = (len(signal)-n)/2
#on both sides.
deconv_res = np.zeros(len(signal))
deconv_res[s:len(signal)-s-1] = deconv
deconv = deconv_res
# now deconv contains the deconvolution
# expanded to the original shape (filled with zeros)
#### Plot ####
fig , ax = plt.subplots(nrows=4, figsize=(6,7))
ax[0].plot(signal, color="#907700", label="original", lw=3 )
ax[1].plot(gauss, color="#68934e", label="gauss filter", lw=3 )
# we need to divide by the sum of the filter window to get the convolution normalized to 1
ax[2].plot(filtered/np.sum(gauss), color="#325cab", label="convoluted" , lw=3 )
ax[3].plot(deconv, color="#ab4232", label="deconvoluted", lw=3 )
for i in range(len(ax)):
ax[i].set_xlim([0, len(signal)])
ax[i].set_ylim([-0.07, 1.2])
ax[i].legend(loc=1, fontsize=11)
if i != len(ax)-1 :
ax[i].set_xticklabels([])
plt.savefig(__file__ + ".png")
plt.show()
此代码生成以下图像,准确显示我们想要的内容 (Deconvolve(Convolve(signal,gauss) , gauss) == signal
)
一些重要的发现是:
mode = 'same'
确保它与信号存在相同的数组形状。n = len(signal) - len(gauss) + 1
点。因此,为了让它也驻留在相同的原始数组形状上,我们需要在两侧将其扩展 s = (len(signal)-n)/2
。当然,仍然欢迎对这个问题有进一步的发现、评论和建议。
关于python - 了解 scipy 反卷积,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/40615034/
我正在尝试构建不同(但每个同质)类型的可遍历项的多个交叉产品。所需的返回类型是元组的可遍历对象,其类型与输入可遍历对象中的类型相匹配。例如: List(1, 2, 3) cross Seq("a",
import java.util.Scanner; public class BooleanProduct { public static void main(String[] args) {
任务 - 数字的最大 K 积 时间限制:1 内存限制:64 M 给定一个整数序列 N(1 ≤ N ≤ 10 月,| A i | ≤ 2.10 9)和数量 K(1 ≤ K ≤ N)。找出乘积最大的 K
考虑一个大小为 48x16 的 float 矩阵 A 和一个大小为 1x48 的 float vector b。 请建议一种在常见桌面处理器 (i5/i7) 上尽可能快地计算 b×A 的方法。 背景。
假设我有一个 class Rectangle(object): def __init__(self, len
设 A 为 3x3 阶矩阵。判断矩阵A的 boolean 积可以组成多少个不同的矩阵。 这是我想出的: #include int main() { int matri
背景 生成随机权重列表后: sizes = [784,30,10] weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1],sizes[
我正在开发一个 python 项目并使用 numpy。我经常需要通过单位矩阵计算矩阵的克罗内克积。这些是我代码中的一个相当大的瓶颈,所以我想优化它们。我必须服用两种产品。第一个是: np.kron(n
有人可以提供一个例子说明如何使用 uBLAS 产品来乘法吗?或者,如果有更好的 C++ 矩阵库,您可以推荐我也欢迎。这正在变成一个令人头疼的问题。 这是我的代码: vector myVec(scala
我正在尝试开发一个Javascript程序,它会提示用户输入两个整数,然后显示这两个整数的和、乘积、差和商。现在它只显示总和。我实际上不知道乘法、减法和除法命令是否正在执行。这是 jsfiddle 的
如何使用 la4j 计算 vector (叉)积? vector 乘积为 接受两个 vector 并返回 vector 。 但是他们有scalar product , product of all e
在 C++ 中使用 Lapack 让我有点头疼。我发现为 fortran 定义的函数有点古怪,所以我尝试在 C++ 上创建一些函数,以便我更容易阅读正在发生的事情。 无论如何,我没有让矩阵 vecto
是否可以使用 Apple 的 Metal Performance Shaders 执行 Hadamard 产品?我看到可以使用 this 执行普通矩阵乘法,但我特别在寻找逐元素乘法,或者一种构造乘法的
我正在尝试使用 open mp 加速稀疏矩阵 vector 乘积,代码如下: void zAx(double * z, double * data, long * colind, long * row
有没有一种方法可以使用 cv::Mat OpenCV 中的数据结构? 我检查过 the documentation并且没有内置功能。但是我在尝试将标准矩阵乘法表达式 (*) 与 cv::Mat 类型的
我是一名优秀的程序员,十分优秀!