- c - 在位数组中找到第一个零
- linux - Unix 显示有关匹配两种模式之一的文件的信息
- 正则表达式替换多个文件
- linux - 隐藏来自 xtrace 的命令
我有这个矩阵 A,表示图像像素强度的相似性。例如:考虑一张 10 x 10
图像。在这种情况下,矩阵 A 的维度为 100 x 100
,元素 A(i,j) 的值介于 0 到 1 之间,表示像素 i 与 j 的相似度强度。
我正在使用OpenCV进行图像处理,开发环境是C on Linux。
目标是计算矩阵 A 的特征向量,我使用了以下方法:
static CvMat mat, *eigenVec, *eigenVal;
static double A[100][100]={}, Ain1D[10000]={};
int cnt=0;
//Converting matrix A into a one dimensional array
//Reason: That is how cvMat requires it
for(i = 0;i < affnDim;i++){
for(j = 0;j < affnDim;j++){
Ain1D[cnt++] = A[i][j];
}
}
mat = cvMat(100, 100, CV_32FC1, Ain1D);
cvEigenVV(&mat, eigenVec, eigenVal, 1e-300);
for(i=0;i < 100;i++){
val1 = cvmGet(eigenVal,i,0); //Fetching Eigen Value
for(j=0;j < 100;j++){
matX[i][j] = cvmGet(eigenVec,i,j); //Fetching each component of Eigenvector i
}
}
问题:执行后,我得到几乎所有特征向量的所有分量都为零。我尝试了不同的图像,还尝试用 0 到 1 之间的随机值填充 A,但结果相同。
返回的几个顶级特征值如下所示:
9805401476911479666115491135488.000000
-9805401476911479666115491135488.000000
-89222871725331592641813413888.000000
89222862280598626902522986496.000000
5255391142666987110400.000000
我现在正在考虑使用 cvSVD()它执行实浮点矩阵的奇异值分解,可能会产生特征向量。但在那之前我想在这里问一下。我目前的做法有什么荒谬之处吗?我使用的 API 是否正确,即 cvEigenVV()对于正确的输入矩阵(我的矩阵 A 是一个浮点矩阵)?
干杯
最佳答案
读者注意:这篇文章乍一看似乎与主题无关,但请引用上面评论中的讨论。
以下是我尝试实现 Spectral Clustering 算法应用于MATLAB中的图像像素.我完全按照 paper @Andriyev 提到:
Andrew Ng, Michael Jordan, and Yair Weiss (2002). On spectral clustering: analysis and an algorithm. In T. Dietterich, S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14. MIT Press
代码:
%# parameters to tune
SIGMA = 2e-3; %# controls Gaussian kernel width
NUM_CLUSTERS = 4; %# specify number of clusters
%% Loading and preparing a sample image
%# read RGB image, and make it smaller for fast processing
I0 = im2double(imread('house.png'));
I0 = imresize(I0, 0.1);
[r,c,~] = size(I0);
%# reshape into one row per-pixel: r*c-by-3
%# (with pixels traversed in columwise-order)
I = reshape(I0, [r*c 3]);
%% 1) Compute affinity matrix
%# for each pair of pixels, apply a Gaussian kernel
%# to obtain a measure of similarity
A = exp(-SIGMA * squareform(pdist(I,'euclidean')).^2);
%# and we plot the matrix obtained
imagesc(A)
axis xy; colorbar; colormap(hot)
%% 2) Compute the Laplacian matrix L
D = diag( 1 ./ sqrt(sum(A,2)) );
L = D*A*D;
%% 3) perform an eigen decomposition of the laplacian marix L
[V,d] = eig(L);
%# Sort the eigenvalues and the eigenvectors in descending order.
[d,order] = sort(real(diag(d)), 'descend');
V = V(:,order);
%# kepp only the largest k eigenvectors
%# In this case 4 vectors are enough to explain 99.999% of the variance
NUM_VECTORS = sum(cumsum(d)./sum(d) < 0.99999) + 1;
V = V(:, 1:NUM_VECTORS);
%% 4) renormalize rows of V to unit length
VV = bsxfun(@rdivide, V, sqrt(sum(V.^2,2)));
%% 5) cluster rows of VV using K-Means
opts = statset('MaxIter',100, 'Display','iter');
[clustIDX,clusters] = kmeans(VV, NUM_CLUSTERS, 'options',opts, ...
'distance','sqEuclidean', 'EmptyAction','singleton');
%% 6) assign pixels to cluster and show the results
%# assign for each pixel the color of the cluster it belongs to
clr = lines(NUM_CLUSTERS);
J = reshape(clr(clustIDX,:), [r c 3]);
%# show results
figure('Name',sprintf('Clustering into K=%d clusters',NUM_CLUSTERS))
subplot(121), imshow(I0), title('original image')
subplot(122), imshow(J), title({'clustered pixels' '(color-coded classes)'})
...并使用我在 Paint 中绘制的简单房屋图像,结果是:
顺便说一下,使用的前 4 个特征值是:
1.0000
0.0014
0.0004
0.0002
和相应的特征向量[长度为 r*c=400 的列]:
-0.0500 0.0572 -0.0112 -0.0200
-0.0500 0.0553 0.0275 0.0135
-0.0500 0.0560 0.0130 0.0009
-0.0500 0.0572 -0.0122 -0.0209
-0.0500 0.0570 -0.0101 -0.0191
-0.0500 0.0562 -0.0094 -0.0184
......
请注意,上面执行的步骤在您的问题中没有提及(拉普拉斯矩阵,并对其行进行归一化)
关于c - 使用 OpenCV 计算特征向量,我们在Stack Overflow上找到一个类似的问题: https://stackoverflow.com/questions/1856862/
设置 我希望能够定义一个特征,使得任何实现该特征的结构不仅必须实现函数,而且还必须为某些常量指定值。所以也许是这样的: trait MyTrait { const MY_CONST: u8;
在我的 Web 应用程序中,授权用户至少有 4 个“方面”:http session 相关数据、持久数据、facebook 数据、运行时业务数据。 我决定使用案例类组合而不是特征至少有两个原因: 性状
我正在尝试使用以下代码从类中获取完整数据成员的列表: import std.stdio; import std.traits; class D { static string[] integr
我正在尝试实现 From对于我的一种类型。它应该消耗任意长度的行(仅在运行时已知)并从行中获取数据。编译器提示 &[&str; 2]不是 &[&str] ,即它不能将固定大小的切片转换为任意长度的切片
有人可以请你这么好心,并指出一种提取拟合树中使用的列/特征的方法,使用如下代码: library(dplyr) library(caret) library(rpart) df % dplyr
假设我定义了一个 Group所有组操作的特征。是否可以创建一个包装器AGroup超过 Group无需手动派生所有操作? 基本上,我想要这个: #[derive (Copy, Debug, Clone,
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
我想让一个案例类扩展一个特征 以下是我的要求: 我需要为 child 使用案例类。这是一个硬性要求,因为 scopt ( https://github.com/scopt/scopt ) parent
最近浏览了Markus Stocker的博客他很好地解释了如何在使用 observation 时表示传感器观察结果。 SSN 的模块本体论。我完全理解他的解释,但我发现有一件事多余地代表了一个的两个特
我有以下情况/代码; trait Model { def myField: String } case class MyModel(myField: String) extends Model
不确定标题是否完全有意义,对此感到抱歉。我是机器学习新手,正在使用 Scikit 和决策树。 这就是我想做的;我想获取所有输入并包含一个独特的功能,即客户端 ID。现在,客户端 ID 是唯一的,无法以
我想读取具有 Eigen 的 MNIST 数据集,每个文件都由一个矩阵表示。我希望在运行时确定矩阵大小,因为训练集和测试集的大小不同。 Map> MNIST_dataset((uchar*)*_dat
在 MATLAB 中,我可以选择一个分散的子矩阵,例如: A = [1 ,2 ,3;4,5,6;7,8,9] A([1,3],[1,3]) = [1,3;7,9] 有没有用 Eigen 做到这一点的聪
我在执行 Into 时遇到问题Rust 中通用结构的特征。下面是我正在尝试做的简化版本: struct Wrapper { value: T } impl Into for Wrapper {
我有这段 matlab 代码,我想用 Eigen 编写: [V_K,D_K] = eig(K); d_k = diag(D_K); ind_k = find(d_k > 1e-8); d_k(ind_
我正在使用 Eigen C++ 矩阵库,我想获取对矩阵列的引用。文档说要使用 matrix_object.col(index),但这似乎返回了一个表示列的对象,而不是简单地引用原始矩阵对象中的列。我担
在乘以很多旋转矩阵之后,由于舍入问题(去正交化),最终结果可能不再是有效的旋转矩阵 重新正交化的一种方法是遵循以下步骤: 将旋转矩阵转换为轴角表示法 ( link ) 将轴角转换回旋转矩阵 ( lin
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
定义可由命名空间中的多个类使用的常量的最佳方法是什么?我试图避免太多的继承,所以扩展基类不是一个理想的解决方案,我正在努力寻找一个使用特征的好的解决方案。这在 PHP 5.4 中是可行的还是应该采用不
我是一名优秀的程序员,十分优秀!